| 43901 |
Find the Inflection Points |
y=2x^3+3x^2-12x+5 |
|
| 43902 |
Find the Local Maxima and Minima |
f(x)=12x^4-72x^2 |
|
| 43903 |
Find the Inflection Points |
x/(4x^2-1) |
|
| 43904 |
Find the Inflection Points |
x square root of x+18 |
|
| 43905 |
Find the Local Maxima and Minima |
f(x)=8x^3-16x^2+8x+9 |
|
| 43906 |
Divide |
-9/3 |
|
| 43907 |
Divide |
-4/2 |
|
| 43908 |
Divide |
49/7 |
|
| 43909 |
Divide |
32÷2 |
|
| 43910 |
Divide |
48/2 |
|
| 43911 |
Divide |
250/3 |
|
| 43912 |
Divide |
52/4 |
|
| 43913 |
Convert to a Mixed Number |
4.5 |
|
| 43914 |
Evaluate from the Right |
limit as x approaches 3 from the right of natural log of x-3 |
|
| 43915 |
Solve by Factoring |
-6x^2+17x+3=0 |
|
| 43916 |
Find Where Increasing/Decreasing Using Derivatives |
f(x)=5x^4+3x^3 |
|
| 43917 |
Find Where Increasing/Decreasing Using Derivatives |
f(x)=x-cos(x) |
|
| 43918 |
Evaluate the Summation |
sum from n=1 to 24 of 5n-7 |
|
| 43919 |
Evaluate the Summation |
sum from k=0 to 1 of 2k-1 |
|
| 43920 |
Evaluate the Summation |
sum from n=1 to 6 of n/(2n+1) |
|
| 43921 |
Find the Value Using the Unit Circle |
tan(h(1)) |
|
| 43922 |
Find dx/dy at (0,p/12) |
cos(6y)=x ; (0,pi/12) |
; |
| 43923 |
Find dx/dy at (1,1) |
y^3=x ; (1,1) |
; |
| 43924 |
Find the Inflection Points |
f(x)=x square root of x+21 |
|
| 43925 |
Find the Tangent Line at the Point |
sin(sin(x)) , (2pi,0) |
, |
| 43926 |
Find the Tangent Line at the Point |
9x^2+xy+9y^2=19 , (1,1) |
, |
| 43927 |
Find Where Increasing/Decreasing Using Derivatives |
1/4x^4-1/3x^3-6x^2 |
|
| 43928 |
Convert to Rectangular |
r=2sin(theta) |
|
| 43929 |
Find the Third Derivative |
f(x)=4x^3+7/(x^3) |
|
| 43930 |
Find the Area Between the Curves |
6x+y^2=7 x=y |
|
| 43931 |
Find the Linearization at a=25 |
f(x) = square root of x , a=25 |
, |
| 43932 |
Evaluate Using L'Hospital's Rule |
limit as x approaches infinity of xsin(pi/x) |
|
| 43933 |
Evaluate Using L'Hospital's Rule |
limit as x approaches infinity of (( natural log of 6x)^2)/(( natural log of 2x)^2) |
|
| 43934 |
Find the Antiderivative |
cos(x)^4sin(x) |
|
| 43935 |
Find the Antiderivative |
square root of tan(x) |
|
| 43936 |
Find the Antiderivative |
(x-x^2)/(2 cube root of x) |
|
| 43937 |
Find the Antiderivative |
(x^2+1) |
|
| 43938 |
Find the Antiderivative |
cos(x)-sin(x) |
|
| 43939 |
Find the Antiderivative |
8cos(x) |
|
| 43940 |
Find the Antiderivative |
2sec(x)tan(x) |
|
| 43941 |
Find the Antiderivative |
-2sin(x) |
|
| 43942 |
Find the Local Maxima and Minima |
(x^2+9)(81-x^2) |
|
| 43943 |
Find the Local Maxima and Minima |
x square root of 256-x^2 |
|
| 43944 |
Find the Local Maxima and Minima |
2x^3-4x^2+2x-1 |
|
| 43945 |
Find the Asymptotes |
(10x)/(x^2-100) |
|
| 43946 |
Find the Asymptotes |
2/(x-7) |
|
| 43947 |
Convert to Logarithmic Form |
y=x^(7x) |
|
| 43948 |
Find the Concavity |
8x^2-8sin(2x) |
|
| 43949 |
Find the Average Rate of Change |
y=2x^2 ; [0,4] |
; |
| 43950 |
Find the Concavity |
(x+4)/(x^2-16) |
|
| 43951 |
Find the Second Derivative |
13xsin(x) |
|
| 43952 |
Find the Second Derivative |
2sin(x)cos(x) |
|
| 43953 |
Find the Second Derivative |
5sin(x)cos(x) |
|
| 43954 |
Find the Third Derivative |
cos(3t) |
|
| 43955 |
Find the Third Derivative |
-(cos(x)) |
|
| 43956 |
Find the Second Derivative |
(1000e^(0.12t))/(19+e^(0.12t)) |
|
| 43957 |
Find the Second Derivative |
1/20x^5 |
|
| 43958 |
Find the Second Derivative |
9sec(x) |
|
| 43959 |
Find the Second Derivative |
cos(3t) |
|
| 43960 |
Convert to Rectangular |
x=sin(1/2theta) , y=cos(1/2theta) |
, |
| 43961 |
Find the Derivative Using Quotient Rule - d/dx |
-x/(7y) |
|
| 43962 |
Find the Derivative Using Quotient Rule - d/dy |
-x/(7y) |
|
| 43963 |
Find the Critical Points |
f(x)=x^3-6x^2+35 |
|
| 43964 |
Find the Critical Points |
g(x)=x^5-5x^3 |
|
| 43965 |
Find the Critical Points |
f(x)=2x^3+6x+1 |
|
| 43966 |
Find the Critical Points |
f(x)=x^3-75x |
|
| 43967 |
Find the Critical Points |
f(x)=4x^2-6x |
|
| 43968 |
Find the Critical Points |
f(x)=x/2+cos(x) |
|
| 43969 |
Find the Domain |
f(x)=x/(1- natural log of x-2) |
|
| 43970 |
Evaluate Using the Squeeze Theorem |
limit as x approaches infinity of square root of 9x^2+x-3x |
|
| 43971 |
Find the Absolute Max and Min over the Interval |
f(x)=x^3-3x ; [-4,1] |
; |
| 43972 |
Find the Absolute Max and Min over the Interval |
f(x)=(4x)/(x^2+1) , [-4,0] |
, |
| 43973 |
Find the Concavity |
f(x)=(x+7)/(x^2-49) |
|
| 43974 |
Find the Derivative of the Integral |
y=cos( square root of sin(tan(5x))) |
|
| 43975 |
Use the Limit Definition to Find the Derivative |
f(x)=x^2-5x-4 |
|
| 43976 |
Find the Integral |
sec(theta)^2 |
|
| 43977 |
Find the Integral |
u^-1 |
|
| 43978 |
Multiply |
32*8 |
|
| 43979 |
Find the Critical Points |
x^(3/4)-3x^(1/4) |
|
| 43980 |
Find the Critical Points |
8x^3-12x^2-48x |
|
| 43981 |
Find the Critical Points |
3x^4-24x^3+48x^2 |
|
| 43982 |
Find the Critical Points |
3x^4-28x^3+60x^2 |
|
| 43983 |
Find the Critical Points |
x^6(x-4)^5 |
|
| 43984 |
Find the Maximum/Minimum Value |
x^2+6x+14 |
|
| 43985 |
Find the Maximum/Minimum Value |
5+6x-8x^3 |
|
| 43986 |
Find the Asymptotes |
f(x)=(x+2)/(x^2+10x+16) |
|
| 43987 |
Find the Asymptotes |
f(x)=(x+3)/(x^3-11x^2+24x) |
|
| 43988 |
Find the Asymptotes |
f(x)=(6x)/(x^3-5x^2) |
|
| 43989 |
Find the Asymptotes |
f(x)=(4x+3)/(2x^2) |
|
| 43990 |
Find the Asymptotes |
y=(2e^x)/(e^x-5) |
|
| 43991 |
Find the Local Maxima and Minima |
4x^3-3x^2-18x+17 |
|
| 43992 |
Find the Local Maxima and Minima |
x^4-4x+1 |
|
| 43993 |
Find the Local Maxima and Minima |
3x^4-2x^3 |
|
| 43994 |
Find the Local Maxima and Minima |
x square root of 49-x^2 |
|
| 43995 |
Find the Local Maxima and Minima |
5x^3+15x-4 |
|
| 43996 |
Find the Local Maxima and Minima |
14x^4-84x^2 |
|
| 43997 |
Find the Local Maxima and Minima |
cube root of x-4 |
|
| 43998 |
Find the Local Maxima and Minima |
-x^3+6x^2-16 |
|
| 43999 |
Find the Local Maxima and Minima |
6x^3-12x^2+6x+4 |
|
| 44000 |
Find the Inflection Points |
-1/2x^4-6x^3-27x^2 |
|