| 67101 |
Find dy/dx |
(x+y)^3=x^3+y^3 |
|
| 67102 |
Find dy/dx |
y=3x^2 |
|
| 67103 |
Find dy/dx |
sin(xy)=x |
|
| 67104 |
Find dy/dx |
(4x+4y)^3=64x^3+64y^3 |
|
| 67105 |
Find Where Increasing/Decreasing |
y=x |
|
| 67106 |
Find the Tangent Line at (1,1) |
y = square root of x , (1,1) |
, |
| 67107 |
Find the Derivative - d/dx |
f(x^2) |
|
| 67108 |
Find dx/dy |
x^3+y^3=6xy |
|
| 67109 |
Find dy/dx |
2xy^2-3x^2y=6x |
|
| 67110 |
Find dy/dx |
y=(csc(x)+cot(x))^-1 |
|
| 67111 |
Find the Antiderivative |
dx |
|
| 67112 |
Evaluate the Integral |
integral of (e^x+4^(x+2)) with respect to x |
|
| 67113 |
Integrate By Parts |
integral of e^(-x) with respect to x |
|
| 67114 |
Find the Derivative - d/dx |
f(3) |
|
| 67115 |
Find Where Increasing/Decreasing |
f(x)=x/(x^2+1) |
|
| 67116 |
Find dy/dx |
x^3+y^3=9 |
|
| 67117 |
Find the Antiderivative |
e |
|
| 67118 |
Find the Slope |
-3/2 |
|
| 67119 |
Evaluate the Integral |
integral from 0 to 2 of (3x^2-1)/(x^2) with respect to x |
|
| 67120 |
Find dy/dx |
y=(sec(x))/(1+sec(x)) |
|
| 67121 |
Find the Derivative - d/dx |
y=x^2-1/2cos(x) |
|
| 67122 |
Find the Antiderivative |
f(x)=4x^3-6x^2+2 |
|
| 67123 |
Evaluate the Integral |
integral of (x+3)/(x^2-16) with respect to x |
|
| 67124 |
Find dy/dx |
y=(csc(x))/(1+csc(x)) |
|
| 67125 |
Find dy/dx |
ycos(x)=3x^2+4y^2 |
|
| 67126 |
Use Logarithmic Differentiation to Find the Derivative |
y=x^(5x) |
|
| 67127 |
Find the Antiderivative |
f(x)=x(x-4) |
|
| 67128 |
Find dy/dx |
(x^2+y^2)^2=4x^2y |
|
| 67129 |
Evaluate the Limit |
limit as x approaches pi/2 of (cot(x)^2)/(1-sin(x)) |
|
| 67130 |
Find the Derivative - d/dx |
x^1 |
|
| 67131 |
Integrate By Parts |
integral of xsec(x)^2 with respect to x |
|
| 67132 |
Find the Linearization at a=π/6 |
f(x)=sin(x) , a=pi/6 |
, |
| 67133 |
Find dy/dx |
3y^2+x^2-xy=1 |
|
| 67134 |
Find Where Increasing/Decreasing |
f(x)=x^(2/3) |
|
| 67135 |
Find dy/dx |
y=e^(x^2) |
|
| 67136 |
Integrate By Parts |
integral of x^3 natural log of x with respect to x |
|
| 67137 |
Find the Derivative - d/dx |
y=x^2 square root of 36-x^2 |
|
| 67138 |
Evaluate the Limit |
limit as x approaches negative infinity of (x^5+4x^2)/( square root of x^10+8x^7) |
|
| 67139 |
Find dy/dx |
y^2=x |
|
| 67140 |
Find the Second Derivative |
x |
|
| 67141 |
Find dy/dx |
y=x^(2x) |
|
| 67142 |
Integrate By Parts |
integral of x^2e^(3x) with respect to x |
|
| 67143 |
Find dy/dx |
2x^2-3y^2=4 |
|
| 67144 |
Find dy/dx |
ycos(x)=3x^2+2y^2 |
|
| 67145 |
Find dx/dy |
x^2+y^2=16 |
|
| 67146 |
Find the Derivative - d/dx |
ye^(xy) |
|
| 67147 |
Find dy/dx |
x^3+y^3=36 |
|
| 67148 |
Find the Slope |
-4 |
|
| 67149 |
Find dy/dx |
y=(x^3)/(x-1) |
|
| 67150 |
Find the Maximum/Minimum Value |
y=x^4-2x^3-11x^2+12x+36 |
|
| 67151 |
Evaluate the Integral |
integral from 1 to 2 of (3/(x^2)-1) with respect to x |
|
| 67152 |
Use Logarithmic Differentiation to Find the Derivative |
y=x^( square root of x) |
|
| 67153 |
Integrate By Parts |
integral of x^2e^(2x) with respect to x |
|
| 67154 |
Integrate By Parts |
integral of e^xsin(x) with respect to x |
|
| 67155 |
Evaluate the Limit |
limit as theta approaches pi/2 of (sin(2theta)^2)/(1-sin(theta)^2) |
|
| 67156 |
Find dy/dx |
y=x^( natural log of x) |
|
| 67157 |
Find the Derivative - d/dY |
(D^2Y)/(dx^2) |
|
| 67158 |
Evaluate Using L'Hospital's Rule |
limit as x approaches 0 from the right of 1/x-1/(e^x-1) |
|
| 67159 |
Find the Derivative - d/dx |
f(1) |
|
| 67160 |
Find the Derivative - d/dx |
f(-2) |
|
| 67161 |
Find dy/dx |
y=(tan(x))/(1+tan(x)) |
|
| 67162 |
Find dy/dx |
square root of xy=1+x^2y |
|
| 67163 |
Find dy/dx |
x^2-xy-y^2=1 |
|
| 67164 |
Find dy/dx |
y^3+y^2-5y-x^2=-4 |
|
| 67165 |
Find dy/dx |
2y^2-x^2+x^3y=2 |
|
| 67166 |
Find the Equation of Variation |
y=7 , x=-3 , z=-1 |
, , |
| 67167 |
Find dy/dx |
cos(x+y)=sin(x)+sin(y) |
|
| 67168 |
Evaluate the Limit |
limit as x approaches negative infinity of (5x^2+6x)/( square root of 16x^4-5x^2) |
|
| 67169 |
Find dy/dx |
-7x^2y^4-4xy^3=x+3 |
|
| 67170 |
Find the Antiderivative |
d |
|
| 67171 |
Find the Maximum/Minimum Value |
f(x)=1/9x^3-1/3x^2-x+3 |
|
| 67172 |
Evaluate the Integral |
integral of (x+ square root of x) with respect to x |
|
| 67173 |
Integrate By Parts |
integral of xe^(-2x) with respect to x |
|
| 67174 |
Integrate By Parts |
integral of ( natural log of x)^2 with respect to x |
|
| 67175 |
Find the Derivative - d/dx |
e^(f(x))=1+x^2 |
|
| 67176 |
Find the Derivative - d/dθ |
y=pi/2sin(theta)-cos(theta) |
|
| 67177 |
Find dy/dx |
(2x+2y)^3=8x^3+8y^3 |
|
| 67178 |
Find the Slope |
2y+4x+10 |
|
| 67179 |
Find dx/dy |
y=xe^x |
|
| 67180 |
Find the Tangent Line at x=5 |
f(x) = square root of x^2+11 , x=5 |
, |
| 67181 |
Solve the Differential Equation |
(dy)/(dx)=(x+1)^2 |
|
| 67182 |
Evaluate the Integral |
integral of ((4x^6+2x^4)/(x^3)) with respect to x |
|
| 67183 |
Use Logarithmic Differentiation to Find the Derivative |
y=cos(x)^x |
|
| 67184 |
Find Where Increasing/Decreasing |
f(x)=x+1/x |
|
| 67185 |
Find dy/dx |
y=e^(-x) |
|
| 67186 |
Find the Derivative - d/dx |
ax^2 |
|
| 67187 |
Find the Center and Radius |
(x^2)/25+(y^2)/9=1 |
|
| 67188 |
Integrate Using Trig Substitution |
integral of (x^3)/( square root of x^2+4) with respect to x |
|
| 67189 |
Evaluate the Limit |
limit as theta approaches -pi/4 of (1+ square root of 2sin(theta))/(cos(2theta)) |
|
| 67190 |
Find dy/dx |
(x^2)/(x+y)=y^2+2 |
|
| 67191 |
Find dy/dx |
x=sec(y) |
|
| 67192 |
Find the Maximum/Minimum Value |
p(x)=-1/2x^3+3/2x-1 |
|
| 67193 |
Evaluate Using L'Hospital's Rule |
limit as x approaches pi/4 of (cos(x)-sin(x))/(tan(x)-1) |
|
| 67194 |
Find Where Increasing/Decreasing |
f(x)=(x^2)/(x^2-9) |
|
| 67195 |
Find dy/dx |
3x^2+2xy+y^2=2 |
|
| 67196 |
Find Where Increasing/Decreasing |
f(x)=3 |
|
| 67197 |
Find dy/dx |
x^2-3xy+y^2=1 |
|
| 67198 |
Find the Tangent Line at (25,5) |
y = square root of x , (25,5) |
, |
| 67199 |
Evaluate the Integral |
integral from 0 to 9 of (1/3x-2) with respect to x |
|
| 67200 |
Find dy/dx |
x^3+3xy+2y^3=17 |
|