| 59701 |
Find dy/dx |
y=e^(2x) |
|
| 59702 |
Find the Antiderivative |
f(x)=6x^5-8x^4-9x^2 |
|
| 59703 |
Find the Area Under the Curve |
y=e^(2x) ; [0,5] |
; |
| 59704 |
Find the Area Under the Curve |
y=x^2 ; [0,2] |
; |
| 59705 |
Find the Absolute Max and Min over the Interval |
f(x)=x^3-3x+5 ; [-4,1] |
; |
| 59706 |
Find Where Increasing/Decreasing Using Derivatives |
( natural log of x)/x |
|
| 59707 |
Evaluate the Summation |
sum from n=0 to infinity of x^n |
|
| 59708 |
Evaluate the Summation |
sum from k=1 to 18 of k |
|
| 59709 |
Find dy/dx |
y=x^( natural log of x) |
|
| 59710 |
Find dy/dx |
x^2-3xy+y^3=3 |
|
| 59711 |
Find dy/dx |
x^2-2xy+3y^2=8 |
|
| 59712 |
Find dy/dx |
x^3+2y^2-xy=2 |
|
| 59713 |
Find dy/dx |
natural log of 2x+y=x+1 |
|
| 59714 |
Find the Area Under the Curve |
y=2x+1 ; [1,3] |
; |
| 59715 |
Find the Antiderivative |
f(x)=5x^4 |
|
| 59716 |
Find the Antiderivative |
f(x)=x(12x+8) |
|
| 59717 |
Find the Second Derivative |
cos(x^2) |
|
| 59718 |
Find Where Increasing/Decreasing Using Derivatives |
xe^x |
|
| 59719 |
Find the Integral |
(x^2)/2 |
|
| 59720 |
Find the Inflection Points |
f(x)=x^4-10x^3+24x^2+3x+5 |
|
| 59721 |
Find the Area Under the Curve |
y=e^(3x) ; [0,2] |
; |
| 59722 |
Find the Antiderivative |
g(t)=(8+t+t^2)/( square root of t) |
|
| 59723 |
Find the Antiderivative |
g(t)=(4+t+t^2)/( square root of t) |
|
| 59724 |
Find the Antiderivative |
f(x) = fourth root of x^3+ cube root of x^4 |
|
| 59725 |
Find the Antiderivative |
f(x)=1/( square root of x) |
|
| 59726 |
Find the Derivative - d/dh |
pir^2h |
|
| 59727 |
Evaluate the Summation |
sum from n=1 to 9 of (3/2)^(n-1) |
|
| 59728 |
Evaluate the Summation |
sum from n=1 to 30 of n(n^2+4) |
|
| 59729 |
Evaluate the Summation |
sum from k=1 to 15 of k^2 |
|
| 59730 |
Find dy/dx |
y^4+3xy+x=2 |
|
| 59731 |
Find dy/dx |
y=cos(2x) |
|
| 59732 |
Evaluate the Summation |
sum from i=1 to 3 of i^4-i^3 |
|
| 59733 |
Find dy/dx |
3x^2-x^2y+y^4=1 |
|
| 59734 |
Find the Derivative - d/dt |
sin(e^(-t)) |
|
| 59735 |
Find the Derivative - d/dt |
3/t |
|
| 59736 |
Find the Inverse |
f(X)=4x+2 |
|
| 59737 |
Find the Inflection Points |
f(x)=x^(1/3)(x+4) |
|
| 59738 |
Find the Antiderivative |
f(x) = square root of 5 |
|
| 59739 |
Find the Antiderivative |
f(x)=2e^x |
|
| 59740 |
Find the Area Under the Curve |
y=x^2 ; [1,4] |
; |
| 59741 |
Find the Area Under the Curve |
y=x^2 ; [1,5] |
; |
| 59742 |
Find the Area Between the Curves |
y=-x^2+6x , y=0 |
, |
| 59743 |
Find the Area Between the Curves |
y=x^(14/13) , y=12x^(1/13) |
, |
| 59744 |
Find the Critical Points |
F(x)=x^(4/5)(x-6)^2 |
|
| 59745 |
Divide |
256/4 |
|
| 59746 |
Expand Using the Binomial Theorem |
(r+2s)^3 |
|
| 59747 |
Divide |
15/4 |
|
| 59748 |
Find the Derivative - d/dy |
x/(x^2+y^2) |
|
| 59749 |
Find the Local Maxima and Minima |
f(x,y)=x^3+y^3-9xy |
|
| 59750 |
Find the Area Under the Curve |
y=x^2 ; [3,5] |
; |
| 59751 |
Solve for t |
x=t^2 |
|
| 59752 |
Find dy/dx |
y^4-4y^2=x^4-9x^2 |
|
| 59753 |
Find dy/dx |
y=(x/(x+1))^5 |
|
| 59754 |
Find dB/dt |
B=Pe^(rt) |
|
| 59755 |
Find Where Increasing/Decreasing Using Derivatives |
-12x^5+135x^4-400x^3 |
|
| 59756 |
Find the Critical Points |
3x^2-6x |
|
| 59757 |
Find the Critical Points |
x square root of 100-x^2 |
|
| 59758 |
Find the Area Under the Curve |
y=2x ; [1,3] |
; |
| 59759 |
Find the Area Under the Curve |
y=x^3 ; [1,2] |
; |
| 59760 |
Find the Area Under the Curve |
y=x^3 ; [0,4] |
; |
| 59761 |
Find the Derivative - d/dy |
xe^(xy) |
|
| 59762 |
Find the Derivative - d/dy |
e^(6xy) |
|
| 59763 |
Find the Inverse |
f(x)=x^7-2 |
|
| 59764 |
Find the Inflection Points |
f(x)=x(x-4)^3 |
|
| 59765 |
Find the Critical Points |
h(t)=t^(3/4)-6t^(1/4) |
|
| 59766 |
Find the Antiderivative |
f(x)=0 |
|
| 59767 |
Find the Area Between the Curves |
y=3x+10 , y=x^2 |
, |
| 59768 |
Solve for y |
x=y^2-4y |
|
| 59769 |
Simplify |
x-5>y |
|
| 59770 |
Find dy/dx |
x^2y-2x^2-8=0 |
|
| 59771 |
Find dy/dx |
x^4+y^4=16xy |
|
| 59772 |
Find the Fourth Derivative |
e^x |
|
| 59773 |
Find the Critical Points |
x square root of 64-x^2 |
|
| 59774 |
Find the Inflection Points |
f(x)=2x^4-8x+3 |
|
| 59775 |
Find the Area Under the Curve |
y=2x ; [1,6] |
; |
| 59776 |
Find the Area Under the Curve |
y=3x ; [1,4] |
; |
| 59777 |
Find the Area Under the Curve |
y=x^3 ; [3,4] |
; |
| 59778 |
Divide |
256/2 |
|
| 59779 |
Divide |
256/3 |
|
| 59780 |
Find the Derivative - d/dt |
sin(t)-tcos(t) |
|
| 59781 |
Find the Antiderivative |
f(x)=7 |
|
| 59782 |
Find the Antiderivative |
f(x)=8x^2 |
|
| 59783 |
Find the Critical Points |
g(x)=x^4-4x^2 |
|
| 59784 |
Find the Critical Points |
f(x)=x^(4/5)(x-4)^2 |
|
| 59785 |
Find the Domain and Range |
4x^2+25y^2=100 |
|
| 59786 |
Solve for t |
e^(2t)=2000 |
|
| 59787 |
Find dy/dx |
5x^3-2x^2y^2+4y^3-7=0 |
|
| 59788 |
Find dy/dx |
3y^2-2x^2=6-2xy |
|
| 59789 |
Find the Domain and Range |
16x^2+4y^2=16 |
|
| 59790 |
Find the Area Under the Curve |
y=x^2 ; [2,3] |
; |
| 59791 |
Find the Area Under the Curve |
y=x^3 ; [1,4] |
; |
| 59792 |
Find the Derivative - d/dt |
sec(t)^2-1 |
|
| 59793 |
Find the Derivative - d/dt |
e^t+e^(-t) |
|
| 59794 |
Find the Derivative - d/dt |
e^tcos(t) |
|
| 59795 |
Find the Derivative - d/dy |
8y |
|
| 59796 |
Divide |
10/4 |
|
| 59797 |
Find the Inflection Points |
x^3-6x^2+9x |
|
| 59798 |
Find the Inflection Points |
x^4-2x^3 |
|
| 59799 |
Find the Critical Points |
f(x)=1/3x^3-x^2+4 |
|
| 59800 |
Find the Critical Points |
f(x)=5x^3e^(-x) |
|