| 59301 |
Find the Asymptotes |
x/(x^2+1) |
|
| 59302 |
Find the Inflection Points |
f(x) = natural log of x^4+27 |
|
| 59303 |
Find the Derivative Using Chain Rule - d/dx |
2 square root of 2x-2 |
|
| 59304 |
Find the Inflection Points |
f(t)=e^(-2t^2) |
|
| 59305 |
Evaluate the Derivative at y=4x |
y=3x-2 , y=4x |
, |
| 59306 |
Divide |
81/4 |
|
| 59307 |
Find the Inflection Points |
f(x)=xe^(-x) |
|
| 59308 |
Find the Inflection Points |
y=(x^3)/3-x^2-15x |
|
| 59309 |
Find the Asymptotes |
xe^(-x) |
|
| 59310 |
Evaluate the Function |
f(x+2)=x^2+3x-2 |
|
| 59311 |
Find the Average Value of the Equation |
y=4x-2 , (1,3) |
, |
| 59312 |
Find the Second Derivative |
f(x)=x/(x^2+1) |
|
| 59313 |
Find the Asymptotes |
(x^2)/(x^2-16) |
|
| 59314 |
Find the Area Under the Curve |
f(x)=8x-24 ; [2,6] |
; |
| 59315 |
Find the Derivative of the Integral |
F(x) = integral from x to x^2 of e^(t^4) with respect to t |
|
| 59316 |
Find the Roots (Zeros) |
x^2-2x+2 |
|
| 59317 |
Find Where Increasing/Decreasing Using Derivatives |
f(x)=2x^3-7x^2-40x+5 |
|
| 59318 |
Find Where Increasing/Decreasing Using Derivatives |
f(x)=x^2e^(-x) |
|
| 59319 |
Find the Inflection Points |
y=x^4-5x^2 |
|
| 59320 |
Find the Asymptotes |
y=tan(x-2) |
|
| 59321 |
Divide |
1/0 |
|
| 59322 |
Find the Critical Points |
f(x)=x^(5/3)-5x^(2/3) |
|
| 59323 |
Divide |
125/3 |
|
| 59324 |
Divide |
16/2 |
|
| 59325 |
Find the Critical Points |
g(y)=(y-3)/(y^2-3y+9) |
|
| 59326 |
Find the Sum of the Series |
3 , 11 , 19 , 27 , 35 |
, , , , |
| 59327 |
Evaluate the Derivative at y=x |
y=x^2-2x , y=x |
, |
| 59328 |
Find the LCM |
24x^5y^4 45x^6y^3 |
|
| 59329 |
Find the Derivative of the Integral |
limit as x approaches infinity of 1/( square root of x) integral from 1 to x of 1/( square root of t) with respect to t |
|
| 59330 |
Find the Third Derivative |
f(x)=e^x |
|
| 59331 |
Find the Roots (Zeros) |
x^2+x-2 |
|
| 59332 |
Find Where Increasing/Decreasing Using Derivatives |
f(x)=x^3-3x^2 |
|
| 59333 |
Find the Concavity |
y=(x^3)/3-x^2-15x |
|
| 59334 |
Find the Second Derivative |
x^2-y^2=25 |
|
| 59335 |
Find the Roots (Zeros) |
x^2-x-2 |
|
| 59336 |
Find the Inverse |
f(x) = square root of 5x |
|
| 59337 |
Find Where Increasing/Decreasing Using Derivatives |
f(x)=xe^x |
|
| 59338 |
Find the Fourth Term |
8 , 16 , 24 |
, , |
| 59339 |
Find the Critical Points |
f(x)=x^3-12x+2 |
|
| 59340 |
Find the Roots (Zeros) |
x^2-2x-3 |
|
| 59341 |
Find the Inflection Points |
f(x)=x^3-6x-1 |
|
| 59342 |
Find the Root Mean Square |
y=4x-2 , (1,3) |
, |
| 59343 |
Find the Derivative of the Integral |
d/(dx) integral from 0 to x^2 of (1-t)/(1-t^2) with respect to t |
|
| 59344 |
Convert to Rectangular |
theta=(4pi)/3 |
|
| 59345 |
Find Where Increasing/Decreasing |
f(x)=1/((x+1)^2) |
|
| 59346 |
Find the Maximum/Minimum Value |
f(x)=x^2+2x-3 |
|
| 59347 |
Find the Critical Points |
g(y)=(y-1)/(y^2-3y+3) |
|
| 59348 |
Find Where Increasing/Decreasing Using Derivatives |
y=x square root of 36-x^2 |
|
| 59349 |
Write in Standard Form |
theta=(2pi)/3 |
|
| 59350 |
Find the Sum of the First 6 Terms |
1 , 2 , 4 , 8 , 16 |
, , , , |
| 59351 |
Find the Inflection Points |
f(x)=x^4-6x^2+3 |
|
| 59352 |
Find the Roots (Zeros) |
x^3-8 |
|
| 59353 |
Convert to Rectangular |
theta=pi/6 |
|
| 59354 |
Find the Second Derivative |
f(x)=(x^2)/(1+x) |
|
| 59355 |
Identify the Polar Equation |
r=2+cos(theta) |
|
| 59356 |
Find the Directrix |
y^2=28x |
|
| 59357 |
Find Where Increasing/Decreasing Using Derivatives |
f(x)=x-4x^-2 |
|
| 59358 |
Find the Second Derivative |
y=e^(-x^2) |
|
| 59359 |
Find the Concavity |
f(x) = natural log of x^4+27 |
|
| 59360 |
Find the Concavity |
f(x)=12e^x-e^(2x) |
|
| 59361 |
Find the x and y Intercepts |
f(x)=(x+1)/(x-1) |
|
| 59362 |
Find the Inflection Points |
y=x^3-3x+2 |
|
| 59363 |
Find the Inverse |
y=x^3+x |
|
| 59364 |
Find Where Increasing/Decreasing Using Derivatives |
f(x)=x^3-6x^2 |
|
| 59365 |
Expand the Logarithmic Expression |
natural log of x/( square root of x^4y^6) |
|
| 59366 |
Find the Root Mean Square |
y=x^2-8x , [0,5] |
, |
| 59367 |
Find the Second Derivative |
f(x,y)=8xe^(xy) |
|
| 59368 |
Find the Derivative of the Integral |
integral of 6x-2 with respect to x |
|
| 59369 |
Find the Second Derivative |
f(x)=(x^2)/(3+x) |
|
| 59370 |
Find the Second Derivative |
f(x)=x^2+ square root of x |
|
| 59371 |
Find the Second Derivative |
f(x)=xsin(x) |
|
| 59372 |
Verify the Identity |
(sin(x)+cos(x))/(1+cot(x))=sin(x) |
|
| 59373 |
Find the Focus |
y^2=28x |
|
| 59374 |
Find the Maximum/Minimum Value |
f(x)=x^3-3x^2+1 |
|
| 59375 |
Find Where Increasing/Decreasing Using Derivatives |
f(x)=x^4-4x^3 |
|
| 59376 |
Evaluate Using Summation Formulas |
sum from k=1 to 20 of 30-k^2 |
|
| 59377 |
Evaluate Using Summation Formulas |
sum from i=1 to n of 4k^3-4k |
|
| 59378 |
Find the Area Under the Curve |
f(x)=6x-18 ; [2,6] |
; |
| 59379 |
Find Where Increasing/Decreasing Using Derivatives |
y=x square root of 100-x^2 |
|
| 59380 |
Find the Sum of the First 6 Terms |
1 , 3 , 5 , 7 , 9 |
, , , , |
| 59381 |
Convert to Interval Notation |
(x+6)/(2x-7)>=0 |
|
| 59382 |
Find Where Increasing/Decreasing |
f(x)=2x^2-4x+3 |
|
| 59383 |
Find the Roots (Zeros) |
x^2-2x+5 |
|
| 59384 |
Find the Roots (Zeros) |
x^2-3x+2 |
|
| 59385 |
Find the Roots (Zeros) |
x^2+1 |
|
| 59386 |
Find the Critical Points |
y=2x^2+7x-5 |
|
| 59387 |
Find the Critical Points |
y=xe^(-x) |
|
| 59388 |
Find the Second Derivative |
y=xe^x |
|
| 59389 |
Identify the Polar Equation |
r=4-2cos(theta) |
|
| 59390 |
Find the Concavity |
F(x)=x square root of 9-x |
|
| 59391 |
Find the Second Derivative |
f(x)=x(x-4)^3 |
|
| 59392 |
Find the Asymptotes |
9x^2-4y^2=36 |
|
| 59393 |
Find the Focus |
x^2-4y=0 |
|
| 59394 |
Find the Focus |
y^2=-36x |
|
| 59395 |
Find the Vertices |
(x^2)/16+(y^2)/25=1 |
|
| 59396 |
Simplify/Condense |
1/3( log base 8 of y+2+ log base 8 of y+4)- log base 8 of y-1 |
|
| 59397 |
Find the Roots (Zeros) |
x^2-4x+4 |
|
| 59398 |
Find the Roots (Zeros) |
x^2-6x+9 |
|
| 59399 |
Find Where Increasing/Decreasing |
f(x)=x^2-10x |
|
| 59400 |
Find the Second Derivative |
f(x)=x^7e^x |
|