Matemática discreta Ejemplos
,
Paso 1
Paso 1.1
Resta de ambos lados de la ecuación.
Paso 1.2
Divide cada término en por y simplifica.
Paso 1.2.1
Divide cada término en por .
Paso 1.2.2
Simplifica el lado izquierdo.
Paso 1.2.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 1.2.2.2
Divide por .
Paso 1.2.3
Simplifica el lado derecho.
Paso 1.2.3.1
Simplifica cada término.
Paso 1.2.3.1.1
Divide por .
Paso 1.2.3.1.2
La división de dos valores negativos da como resultado un valor positivo.
Paso 1.2.3.1.3
Divide por .
Paso 2
Paso 2.1
Reemplaza todos los casos de en por .
Paso 2.2
Simplifica el lado izquierdo.
Paso 2.2.1
Simplifica cada término.
Paso 2.2.1.1
Aplica la propiedad distributiva.
Paso 2.2.1.2
Multiplica por .
Paso 3
Paso 3.1
Suma a ambos lados de la ecuación.
Paso 3.2
Suma y .
Paso 3.3
Factoriza el lado izquierdo de la ecuación.
Paso 3.3.1
Factoriza de .
Paso 3.3.1.1
Reordena y .
Paso 3.3.1.2
Factoriza de .
Paso 3.3.1.3
Factoriza de .
Paso 3.3.1.4
Reescribe como .
Paso 3.3.1.5
Factoriza de .
Paso 3.3.1.6
Factoriza de .
Paso 3.3.2
Factoriza.
Paso 3.3.2.1
Factoriza con el método AC.
Paso 3.3.2.1.1
Considera la forma . Encuentra un par de números enteros cuyo producto sea y cuya suma sea . En este caso, cuyo producto es y cuya suma es .
Paso 3.3.2.1.2
Escribe la forma factorizada mediante estos números enteros.
Paso 3.3.2.2
Elimina los paréntesis innecesarios.
Paso 3.4
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 3.5
Establece igual a y resuelve .
Paso 3.5.1
Establece igual a .
Paso 3.5.2
Suma a ambos lados de la ecuación.
Paso 3.6
Establece igual a y resuelve .
Paso 3.6.1
Establece igual a .
Paso 3.6.2
Resta de ambos lados de la ecuación.
Paso 3.7
La solución final comprende todos los valores que hacen verdadera.
Paso 4
Paso 4.1
Reemplaza todos los casos de en por .
Paso 4.2
Simplifica el lado derecho.
Paso 4.2.1
Simplifica .
Paso 4.2.1.1
Eleva a la potencia de .
Paso 4.2.1.2
Suma y .
Paso 5
Paso 5.1
Reemplaza todos los casos de en por .
Paso 5.2
Simplifica el lado derecho.
Paso 5.2.1
Simplifica .
Paso 5.2.1.1
Eleva a la potencia de .
Paso 5.2.1.2
Suma y .
Paso 6
La solución del sistema es el conjunto completo de pares ordenados que son soluciones válidas.
Paso 7
El resultado puede mostrarse de distintas formas.
Forma de punto:
Forma de la ecuación:
Paso 8