Cálculo Ejemplos
,
Paso 1
Paso 1.1
Obtén la primera derivada.
Paso 1.1.1
Reescribe como .
Paso 1.1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.3
Reescribe la expresión mediante la regla del exponente negativo .
Paso 1.2
La primera derivada de con respecto a es .
Paso 2
Paso 2.1
Para determinar si la función es continua en o no, obtén el dominio de .
Paso 2.1.1
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 2.1.2
Resuelve
Paso 2.1.2.1
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 2.1.2.2
Simplifica .
Paso 2.1.2.2.1
Reescribe como .
Paso 2.1.2.2.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 2.1.2.2.3
Más o menos es .
Paso 2.1.3
El dominio son todos los valores de que hacen que la expresión sea definida.
Notación de intervalo:
Notación del constructor de conjuntos:
Notación de intervalo:
Notación del constructor de conjuntos:
Paso 2.2
no es continua en porque no está en el dominio de .
La función no es continua.
La función no es continua.
Paso 3
La función no es diferenciable en porque la derivada no es continua en .
La función no es diferenciable.
Paso 4