Примеры

Доказать нахождения корня в интервале
,
Этап 1
Теорема о промежуточном значении утверждает, что если является непрерывной функцией с действительными значениями на интервале , а число лежит между и , то существует такое число на интервале , что .
Этап 2
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Интервальное представление:
Обозначение построения множества:
Этап 3
Вычислим .
Нажмите для увеличения количества этапов...
Этап 3.1
Избавимся от скобок.
Этап 3.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Возведем в степень .
Этап 3.2.2
Умножим на .
Этап 3.3
Вычтем из .
Этап 4
Вычислим .
Нажмите для увеличения количества этапов...
Этап 4.1
Избавимся от скобок.
Этап 4.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Возведем в степень .
Этап 4.2.2
Умножим на .
Этап 4.3
Добавим и .
Этап 5
не находится в интервале .
Корни на этом интервале отсутствуют.
Этап 6
Введите СВОЮ задачу
Для Mathway требуются JavaScript и современный браузер.