Математический анализ Примеры
,
Этап 1
Этап 1.1
Продифференцируем обе части уравнения.
Этап 1.2
Производная по равна .
Этап 1.3
Продифференцируем правую часть уравнения.
Этап 1.3.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 1.3.1.1
Чтобы применить цепное правило, зададим как .
Этап 1.3.1.2
Производная по равна .
Этап 1.3.1.3
Заменим все вхождения на .
Этап 1.3.2
Продифференцируем.
Этап 1.3.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.3.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.2.3
Упростим выражение.
Этап 1.3.2.3.1
Умножим на .
Этап 1.3.2.3.2
Изменим порядок множителей в .
Этап 1.4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 2
Этап 2.1
Зададим производную.
Этап 2.2
Поскольку является константой относительно , производная по равна .
Этап 2.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.3.1
Чтобы применить цепное правило, зададим как .
Этап 2.3.2
Производная по равна .
Этап 2.3.3
Заменим все вхождения на .
Этап 2.4
Поскольку является константой относительно , производная по равна .
Этап 2.5
Возведем в степень .
Этап 2.6
Возведем в степень .
Этап 2.7
Применим правило степени для объединения показателей.
Этап 2.8
Добавим и .
Этап 2.9
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.10
Умножим на .
Этап 2.11
Изменим порядок множителей в .
Этап 3
Подставим в заданное дифференциальное уравнение.
Этап 4
Подставим вместо .
Этап 5
Этап 5.1
Умножим на .
Этап 5.2
Вычтем из обеих частей уравнения.
Этап 5.3
Разделим каждый член на и упростим.
Этап 5.3.1
Разделим каждый член на .
Этап 5.3.2
Упростим левую часть.
Этап 5.3.2.1
Сократим общий множитель .
Этап 5.3.2.1.1
Сократим общий множитель.
Этап 5.3.2.1.2
Перепишем это выражение.
Этап 5.3.2.2
Сократим общий множитель .
Этап 5.3.2.2.1
Сократим общий множитель.
Этап 5.3.2.2.2
Разделим на .
Этап 5.3.3
Упростим правую часть.
Этап 5.3.3.1
Сократим общий множитель .
Этап 5.3.3.1.1
Сократим общий множитель.
Этап 5.3.3.1.2
Перепишем это выражение.
Этап 5.3.3.2
Деление двух отрицательных значений дает положительное значение.
Этап 5.4
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 5.5
Упростим .
Этап 5.5.1
Перепишем в виде .
Этап 5.5.2
Любой корень из равен .
Этап 5.5.3
Умножим на .
Этап 5.5.4
Объединим и упростим знаменатель.
Этап 5.5.4.1
Умножим на .
Этап 5.5.4.2
Возведем в степень .
Этап 5.5.4.3
Возведем в степень .
Этап 5.5.4.4
Применим правило степени для объединения показателей.
Этап 5.5.4.5
Добавим и .
Этап 5.5.4.6
Перепишем в виде .
Этап 5.5.4.6.1
С помощью запишем в виде .
Этап 5.5.4.6.2
Применим правило степени и перемножим показатели, .
Этап 5.5.4.6.3
Объединим и .
Этап 5.5.4.6.4
Сократим общий множитель .
Этап 5.5.4.6.4.1
Сократим общий множитель.
Этап 5.5.4.6.4.2
Перепишем это выражение.
Этап 5.5.4.6.5
Найдем экспоненту.
Этап 5.6
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 5.6.1
Сначала с помощью положительного значения найдем первое решение.
Этап 5.6.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 5.6.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 6
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: