Математический анализ Примеры
,
Этап 1
Этап 1.1
Исключим равные части каждого уравнения и объединим.
Этап 1.2
Решим относительно .
Этап 1.2.1
Перенесем все члены с в левую часть уравнения.
Этап 1.2.1.1
Вычтем из обеих частей уравнения.
Этап 1.2.1.2
Вычтем из .
Этап 1.2.2
Разложим левую часть уравнения на множители.
Этап 1.2.2.1
Пусть . Подставим вместо для всех.
Этап 1.2.2.2
Вынесем множитель из .
Этап 1.2.2.2.1
Вынесем множитель из .
Этап 1.2.2.2.2
Вынесем множитель из .
Этап 1.2.2.2.3
Вынесем множитель из .
Этап 1.2.2.3
Заменим все вхождения на .
Этап 1.2.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 1.2.4
Приравняем к .
Этап 1.2.5
Приравняем к , затем решим относительно .
Этап 1.2.5.1
Приравняем к .
Этап 1.2.5.2
Решим относительно .
Этап 1.2.5.2.1
Вычтем из обеих частей уравнения.
Этап 1.2.5.2.2
Разделим каждый член на и упростим.
Этап 1.2.5.2.2.1
Разделим каждый член на .
Этап 1.2.5.2.2.2
Упростим левую часть.
Этап 1.2.5.2.2.2.1
Сократим общий множитель .
Этап 1.2.5.2.2.2.1.1
Сократим общий множитель.
Этап 1.2.5.2.2.2.1.2
Разделим на .
Этап 1.2.5.2.2.3
Упростим правую часть.
Этап 1.2.5.2.2.3.1
Деление двух отрицательных значений дает положительное значение.
Этап 1.2.6
Окончательным решением являются все значения, при которых верно.
Этап 1.3
Вычислим , когда .
Этап 1.3.1
Подставим вместо .
Этап 1.3.2
Подставим вместо в и решим относительно .
Этап 1.3.2.1
Избавимся от скобок.
Этап 1.3.2.2
Возведение в любую положительную степень дает .
Этап 1.4
Вычислим , когда .
Этап 1.4.1
Подставим вместо .
Этап 1.4.2
Упростим .
Этап 1.4.2.1
Применим правило умножения к .
Этап 1.4.2.2
Возведем в степень .
Этап 1.4.2.3
Возведем в степень .
Этап 1.5
Решение данной системы — полный набор упорядоченных пар, представляющих собой допустимые решения.
Этап 2
Изменим порядок и .
Этап 3
Площадь области между кривыми определяется как интеграл верхней кривой минус интеграл нижней кривой по каждой области. Области определяются точками пересечения кривых. Это можно сделать алгебраически или графически.
Этап 4
Этап 4.1
Объединим интегралы в один интеграл.
Этап 4.2
Вычтем из .
Этап 4.3
Разделим данный интеграл на несколько интегралов.
Этап 4.4
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 4.5
По правилу степени интеграл по имеет вид .
Этап 4.6
Объединим и .
Этап 4.7
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 4.8
По правилу степени интеграл по имеет вид .
Этап 4.9
Упростим ответ.
Этап 4.9.1
Объединим и .
Этап 4.9.2
Подставим и упростим.
Этап 4.9.2.1
Найдем значение в и в .
Этап 4.9.2.2
Найдем значение в и в .
Этап 4.9.2.3
Упростим.
Этап 4.9.2.3.1
Возведение в любую положительную степень дает .
Этап 4.9.2.3.2
Сократим общий множитель и .
Этап 4.9.2.3.2.1
Вынесем множитель из .
Этап 4.9.2.3.2.2
Сократим общие множители.
Этап 4.9.2.3.2.2.1
Вынесем множитель из .
Этап 4.9.2.3.2.2.2
Сократим общий множитель.
Этап 4.9.2.3.2.2.3
Перепишем это выражение.
Этап 4.9.2.3.2.2.4
Разделим на .
Этап 4.9.2.3.3
Умножим на .
Этап 4.9.2.3.4
Добавим и .
Этап 4.9.2.3.5
Возведение в любую положительную степень дает .
Этап 4.9.2.3.6
Сократим общий множитель и .
Этап 4.9.2.3.6.1
Вынесем множитель из .
Этап 4.9.2.3.6.2
Сократим общие множители.
Этап 4.9.2.3.6.2.1
Вынесем множитель из .
Этап 4.9.2.3.6.2.2
Сократим общий множитель.
Этап 4.9.2.3.6.2.3
Перепишем это выражение.
Этап 4.9.2.3.6.2.4
Разделим на .
Этап 4.9.2.3.7
Умножим на .
Этап 4.9.2.3.8
Добавим и .
Этап 4.9.3
Упростим.
Этап 4.9.3.1
Упростим каждый член.
Этап 4.9.3.1.1
Упростим числитель.
Этап 4.9.3.1.1.1
Применим правило умножения к .
Этап 4.9.3.1.1.2
Возведем в степень .
Этап 4.9.3.1.1.3
Возведем в степень .
Этап 4.9.3.1.2
Умножим числитель на величину, обратную знаменателю.
Этап 4.9.3.1.3
Сократим общий множитель .
Этап 4.9.3.1.3.1
Вынесем множитель из .
Этап 4.9.3.1.3.2
Сократим общий множитель.
Этап 4.9.3.1.3.3
Перепишем это выражение.
Этап 4.9.3.1.4
Сократим общий множитель .
Этап 4.9.3.1.4.1
Вынесем множитель из .
Этап 4.9.3.1.4.2
Вынесем множитель из .
Этап 4.9.3.1.4.3
Сократим общий множитель.
Этап 4.9.3.1.4.4
Перепишем это выражение.
Этап 4.9.3.1.5
Упростим числитель.
Этап 4.9.3.1.5.1
Применим правило умножения к .
Этап 4.9.3.1.5.2
Возведем в степень .
Этап 4.9.3.1.5.3
Возведем в степень .
Этап 4.9.3.1.6
Умножим числитель на величину, обратную знаменателю.
Этап 4.9.3.1.7
Умножим .
Этап 4.9.3.1.7.1
Умножим на .
Этап 4.9.3.1.7.2
Умножим на .
Этап 4.9.3.1.8
Умножим .
Этап 4.9.3.1.8.1
Объединим и .
Этап 4.9.3.1.8.2
Умножим на .
Этап 4.9.3.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 4.9.3.3
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Этап 4.9.3.3.1
Умножим на .
Этап 4.9.3.3.2
Умножим на .
Этап 4.9.3.4
Объединим числители над общим знаменателем.
Этап 4.9.3.5
Упростим числитель.
Этап 4.9.3.5.1
Умножим на .
Этап 4.9.3.5.2
Добавим и .
Этап 5