| 46801 |
Expand Using the Binomial Theorem |
(3x^2-4y)^5 |
|
| 46802 |
Expand Using the Binomial Theorem |
(2x+3y)^9 |
|
| 46803 |
Expand Using the Binomial Theorem |
(2v+3)^6 |
|
| 46804 |
Expand Using the Binomial Theorem |
( square root of x- square root of 2)^8 |
|
| 46805 |
Expand Using the Binomial Theorem |
(1+i)^5 |
|
| 46806 |
Expand Using the Binomial Theorem |
(11a+b)^6 |
|
| 46807 |
Find the Derivative Using Chain Rule - d/dx |
y=(5x^2+3)^4 |
|
| 46808 |
Expand Using the Binomial Theorem |
(- square root of 2- square root of 2i)^5 |
|
| 46809 |
Convert to Polar Coordinates |
(2,-(5pi)/4) |
|
| 46810 |
Convert to Polar Coordinates |
(-2,-(5pi)/6) |
|
| 46811 |
Convert to Polar Coordinates |
(1,4) |
|
| 46812 |
Convert to Polar Coordinates |
(-12,-5) |
|
| 46813 |
Convert to Polar Coordinates |
(0.7,-1.1) |
|
| 46814 |
Convert to Polar Coordinates |
-( square root of 6,- square root of 2) |
|
| 46815 |
Convert to Polar Coordinates |
(1,(7pi)/4) |
|
| 46816 |
Convert to Polar Coordinates |
(-5/2,(5 square root of 3)/2) |
|
| 46817 |
Convert to Polar Coordinates |
((3 square root of 2)/2,(3 square root of 2)/2) |
|
| 46818 |
Convert to Polar Coordinates |
(3,-(7pi)/4) |
|
| 46819 |
Convert to Polar Coordinates |
(3 square root of 3,9) |
|
| 46820 |
Convert to Polar Coordinates |
(-3,-(2pi)/3) |
|
| 46821 |
Convert to Polar Coordinates |
(3,-pi/6) |
|
| 46822 |
Convert to Polar Coordinates |
(2, square root of 5) |
|
| 46823 |
Convert to Polar Coordinates |
(-2,30 degrees ) |
|
| 46824 |
Convert to Polar Coordinates |
(-2 square root of 3,0) |
|
| 46825 |
Convert to Polar Coordinates |
(-5,-1) |
|
| 46826 |
Convert to Polar Coordinates |
(5,-7) |
|
| 46827 |
Convert to Polar Coordinates |
(4,60 degrees ) |
|
| 46828 |
Convert to Polar Coordinates |
(5,(4pi)/3) |
|
| 46829 |
Convert to Polar Coordinates |
(4,(23pi)/12) |
|
| 46830 |
Convert to Polar Coordinates |
(3,90 degrees ) |
|
| 46831 |
Convert to Polar Coordinates |
(-4,240 degrees ) |
|
| 46832 |
Convert to Polar Coordinates |
(-4,(7pi)/6) |
|
| 46833 |
Convert to Polar Coordinates |
(4,-10) |
|
| 46834 |
Find the Determinant |
[[6,-7,3],[-2,3,-7],[-5,5,-8]] |
|
| 46835 |
Find the Determinant |
[[5,-2],[-1,5]] |
|
| 46836 |
Find the Determinant |
[[6,1,7],[2,-3,3],[4,-1,2]] |
|
| 46837 |
Find the Determinant |
C=[[-1,0],[2,-2]] |
|
| 46838 |
Find the Determinant |
[[1,0],[-1,2]] |
|
| 46839 |
Find the Determinant |
[[-2,5],[7,6]] |
|
| 46840 |
Find the Determinant |
[[3,2,1],[4,-1,-1],[-5,-1,2]] |
|
| 46841 |
Convert to Polar Coordinates |
(5 square root of 3,0) |
|
| 46842 |
Convert to Polar Coordinates |
(-7,-5) |
|
| 46843 |
Convert to Polar Coordinates |
(-7,8pi) |
|
| 46844 |
Convert to Polar Coordinates |
(6,-7) |
|
| 46845 |
Find the Determinant |
[[0,3],[5,5]] |
|
| 46846 |
Convert to Polar Coordinates |
(9,20) |
|
| 46847 |
Convert to Polar Coordinates |
(9,6) |
|
| 46848 |
Convert to Polar Coordinates |
(8,(7pi)/6) |
|
| 46849 |
Find the Inverse |
4x+9 |
|
| 46850 |
Find the Inverse |
-2x^2-1 |
|
| 46851 |
Find the Inverse |
cube root of x/6-7 |
|
| 46852 |
Find the Inverse |
cube root of x+3 |
|
| 46853 |
Find the Inverse |
(x-5)^2 |
|
| 46854 |
Find the Inverse |
8x+6 |
|
| 46855 |
Find the Inverse |
9-x^2 |
|
| 46856 |
Find the Inverse |
-6(x-2) |
|
| 46857 |
Find the Inverse |
6x+7 |
|
| 46858 |
Find the Inverse |
7sin(x)-6 |
|
| 46859 |
Find the Inverse |
7x-2 |
|
| 46860 |
Find the Inverse |
2x+9 |
|
| 46861 |
Find the Inverse |
x^2+4x |
|
| 46862 |
Determine if Odd, Even, or Neither |
2/(x^2) |
|
| 46863 |
Determine if Odd, Even, or Neither |
3x^2-4|x| |
|
| 46864 |
Find the Inverse |
1/3(x-5) |
|
| 46865 |
Determine if Odd, Even, or Neither |
x^2+x^3 |
|
| 46866 |
Determine if Odd, Even, or Neither |
-x^4+x |
|
| 46867 |
Find the Inverse |
(x+2)/(3x+1) |
|
| 46868 |
Find the Inverse |
1/(x+4) |
|
| 46869 |
Expand Using De Moivre's Theorem |
(-1+i square root of 3)^3 |
|
| 46870 |
Expand Using De Moivre's Theorem |
(-2+i)^4 |
|
| 46871 |
Expand Using De Moivre's Theorem |
(cos(pi/6)+isin(pi/6))^4 |
|
| 46872 |
Expand Using De Moivre's Theorem |
-2+2i |
|
| 46873 |
Expand Using De Moivre's Theorem |
(cos(pi/3)+isin(pi/3))^2 |
|
| 46874 |
Expand Using De Moivre's Theorem |
(cos(pi/6)+isin(pi/6))^3 |
|
| 46875 |
Expand Using De Moivre's Theorem |
(-1/2-( square root of 3)/2i)^10 |
|
| 46876 |
Expand Using De Moivre's Theorem |
(1/2+( square root of 3)/2i)^3 |
|
| 46877 |
Split Using Partial Fraction Decomposition |
(3x^2-6x-3)/(x^3-x) |
|
| 46878 |
Split Using Partial Fraction Decomposition |
4/(3x(5x+1)) |
|
| 46879 |
Split Using Partial Fraction Decomposition |
(41x-37)/(-6x^2-11x+7) |
|
| 46880 |
Split Using Partial Fraction Decomposition |
(4x)/(x^2-1) |
|
| 46881 |
Split Using Partial Fraction Decomposition |
(10x^2+10x+3)/((x+1)(x^2+3x+3)) |
|
| 46882 |
Split Using Partial Fraction Decomposition |
(27-4x)/(x^3-6x^2+9x) |
|
| 46883 |
Split Using Partial Fraction Decomposition |
(2x^2+x+3)/(x^2-9) |
|
| 46884 |
Split Using Partial Fraction Decomposition |
(2x+1)/(x^2-4) |
|
| 46885 |
Split Using Partial Fraction Decomposition |
(-2x^3+7x^2+6)/(x^2(x^2+2)) |
|
| 46886 |
Split Using Partial Fraction Decomposition |
-1/(x^2(x^2+4)) |
|
| 46887 |
Split Using Partial Fraction Decomposition |
1/(x^2(x+2)^2) |
|
| 46888 |
Split Using Partial Fraction Decomposition |
(10x+20)/(x^3-2x^2-4x+8) |
|
| 46889 |
Split Using Partial Fraction Decomposition |
11/(5x^3-45x) |
|
| 46890 |
Split Using Partial Fraction Decomposition |
(11x^2+12x)/((x^2+10)(x^2+11)) |
|
| 46891 |
Split Using Partial Fraction Decomposition |
(11x-10)/((x-3)(x+2)) |
|
| 46892 |
Split Using Partial Fraction Decomposition |
(11x-10)/((x-3)(x+7)) |
|
| 46893 |
Split Using Partial Fraction Decomposition |
(13x+2)/((x-1)(x^2+x+1)) |
|
| 46894 |
Split Using Partial Fraction Decomposition |
(7x-13)/(x^2-2x-3) |
|
| 46895 |
Split Using Partial Fraction Decomposition |
8/(x(1-x)) |
|
| 46896 |
Split Using Partial Fraction Decomposition |
(8x^2+43x+15)/(x^3+7x^2+7x-15) |
|
| 46897 |
Split Using Partial Fraction Decomposition |
99/(x(x+11)) |
|
| 46898 |
Split Using Partial Fraction Decomposition |
(9x^2-22x+42)/((x-6)(x^2+3)) |
|
| 46899 |
Split Using Partial Fraction Decomposition |
(9x^2-8x+26)/(x^3-x^2+2x-2) |
|
| 46900 |
Split Using Partial Fraction Decomposition |
x/((x^2+9)(x+1)) |
|