Trigonométrie Exemples

Factoriser le côté gauche de l'équation.
Cliquez pour voir plus d'étapes...
Factoriser pour le sortir de .
Cliquez pour voir plus d'étapes...
Factoriser pour le sortir de .
Factoriser pour le sortir de .
Factoriser pour le sortir de .
Remplacer le côté gauche par l'expression factorisée.
Si chaque facteur du côté gauche de l'équation est égal à , alors l'expression entière sera égale à .
Poser le premier facteur égal à et résoudre.
Cliquez pour voir plus d'étapes...
Poser le premier facteur égal à .
Prendre la réciproque du sinus des deux côtés de l'équation pour extraire de l'intérieur du sinus.
La valeur exacte de est .
La fonction sinus est positive dans les premier et deuxième quadrants. Pour trouver la deuxième solution, soustraire l'angle de référence à pour trouver la solution dans le deuxième quadrant.
Soustraire de .
Trouver la période.
Cliquez pour voir plus d'étapes...
La période de la fonction peut être calculée à l'aide de .
Remplacer par dans la formule de la période.
Résoudre l'équation.
Cliquez pour voir plus d'étapes...
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Diviser par .
La période de la fonction est donc les valeurs vont se répéter tous les radians dans les deux directions.
, pour tout entier
Regrouper les réponses.
, pour tout entier
, pour tout entier
Poser le facteur suivant égal à et résoudre.
Cliquez pour voir plus d'étapes...
Poser le facteur suivant égal à .
Ajouter aux deux côtés de l'équation.
Diviser chaque terme par et simplifier.
Cliquez pour voir plus d'étapes...
Diviser chaque terme dans par .
Réduire l'expression en annulant les facteurs communs.
Cliquez pour voir plus d'étapes...
Annuler le facteur commun.
Diviser par .
Prendre la réciproque du sinus des deux côtés de l'équation pour extraire de l'intérieur du sinus.
La valeur exacte de est .
La fonction sinus est positive dans les premier et deuxième quadrants. Pour trouver la deuxième solution, soustraire l'angle de référence à pour trouver la solution dans le deuxième quadrant.
Simplifier .
Cliquez pour voir plus d'étapes...
Pour écrire comme une fraction avec un dénominateur commun, multiplier par .
Écrire chaque expression avec un dénominateur commun de , en multipliant chacune par un facteur approprié de .
Cliquez pour voir plus d'étapes...
Combiner.
Multiplier par .
Combiner les numérateurs sur le dénominateur commun.
Simplifier le numérateur.
Cliquez pour voir plus d'étapes...
Déplacer à gauche de .
Soustraire de .
Trouver la période.
Cliquez pour voir plus d'étapes...
La période de la fonction peut être calculée à l'aide de .
Remplacer par dans la formule de la période.
Résoudre l'équation.
Cliquez pour voir plus d'étapes...
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Diviser par .
La période de la fonction est donc les valeurs vont se répéter tous les radians dans les deux directions.
, pour tout entier
, pour tout entier
La solution finale est constituée de toutes les valeurs qui rendent vraie.
, pour tout entier
Exclure les solutions qui ne rendent pas vraie.
, pour tout entier
Entrez VOTRE problème
Mathway nécessite Javascript et un navigateur moderne.
Cookies et confidentialité
Ce site utilise des cookies pour vous garantir la meilleure expérience sur notre site.
Plus d'informations