Trigonometry Examples
Step 1
For any , vertical asymptotes occur at , where is an integer. Use the basic period for , , to find the vertical asymptotes for . Set the inside of the cosecant function, , for equal to to find where the vertical asymptote occurs for .
Divide each term in by and simplify.
Divide each term in by .
Simplify the left side.
Cancel the common factor of .
Cancel the common factor.
Divide by .
Simplify the right side.
Divide by .
Set the inside of the cosecant function equal to .
Divide each term in by and simplify.
Divide each term in by .
Simplify the left side.
Cancel the common factor of .
Cancel the common factor.
Divide by .
Simplify the right side.
Cancel the common factor of .
Cancel the common factor.
Divide by .
The basic period for will occur at , where and are vertical asymptotes.
Find the period to find where the vertical asymptotes exist. Vertical asymptotes occur every half period.
The absolute value is the distance between a number and zero. The distance between and is .
Cancel the common factor of .
Cancel the common factor.
Divide by .
The vertical asymptotes for occur at , , and every , where is an integer. This is half of the period.
Cosecant only has vertical asymptotes.
No Horizontal Asymptotes
No Oblique Asymptotes
Vertical Asymptotes: where is an integer
No Horizontal Asymptotes
No Oblique Asymptotes
Vertical Asymptotes: where is an integer
Step 2
Use the form to find the variables used to find the amplitude, period, phase shift, and vertical shift.
Step 3
Since the graph of the function does not have a maximum or minimum value, there can be no value for the amplitude.
Amplitude: None
Step 4
The period of the function can be calculated using .
Replace with in the formula for period.
The absolute value is the distance between a number and zero. The distance between and is .
Cancel the common factor of .
Cancel the common factor.
Divide by .
Step 5
The phase shift of the function can be calculated from .
Phase Shift:
Replace the values of and in the equation for phase shift.
Phase Shift:
Divide by .
Phase Shift:
Phase Shift:
Step 6
List the properties of the trigonometric function.
Amplitude: None
Period:
Phase Shift: None
Vertical Shift: None
Step 7
The trig function can be graphed using the amplitude, period, phase shift, vertical shift, and the points.
Vertical Asymptotes: where is an integer
Amplitude: None
Period:
Phase Shift: None
Vertical Shift: None
Step 8