Trigonometry Examples

Convert to Trigonometric Form
Reorder and .
This is the trigonometric form of a complex number where is the modulus and is the angle created on the complex plane.
The modulus of a complex number is the distance from the origin on the complex plane.
where
Substitute the actual values of and .
Find .
Tap for more steps...
Raise to the power of to get .
Raise to the power of to get .
Add and to get .
The angle of the point on the complex plane is the inverse tangent of the complex portion over the real portion.
Since inverse tangent of produces an angle in the first quadrant, the value of the angle is .
Substitute the values of and .
Enter YOUR Problem

Enter the email address associated with your Mathway account below and we'll send you a link to reset your password.

Please enter an email address
Please enter a valid email address
The email address you entered was not found in our system
The email address you entered is associated with a Facebook user
We're sorry, we were unable to process your request at this time

Mathway Premium

Step-by-step work + explanations
  •    Step-by-step work
  •    Detailed explanations
  •    No advertisements
  •    Access anywhere
Access the steps on both the Mathway website and mobile apps
$--.--/month
$--.--/year (--%)

Mathway Premium

Visa and MasterCard security codes are located on the back of card and are typically a separate group of 3 digits to the right of the signature strip.

American Express security codes are 4 digits located on the front of the card and usually towards the right.
This option is required to subscribe.
Go Back

Step-by-step upgrade complete!

Mathway requires javascript and a modern browser.
  [ x 2     1 2     π     x d x   ]