Linear Algebra Examples

Find Pivot Positions and Pivot Columns
Step 1
Perform the row operation on (row ) in order to convert some elements in the row to .
Tap for more steps...
Replace (row ) with the row operation in order to convert some elements in the row to the desired value .
Replace (row ) with the actual values of the elements for the row operation .
Simplify (row ).
Step 2
Perform the row operation on (row ) in order to convert some elements in the row to .
Tap for more steps...
Replace (row ) with the row operation in order to convert some elements in the row to the desired value .
Replace (row ) with the actual values of the elements for the row operation .
Simplify (row ).
Step 3
Perform the row operation on (row ) in order to convert some elements in the row to .
Tap for more steps...
Replace (row ) with the row operation in order to convert some elements in the row to the desired value .
Replace (row ) with the actual values of the elements for the row operation .
Simplify (row ).
Step 4
Perform the row operation on (row ) in order to convert some elements in the row to .
Tap for more steps...
Replace (row ) with the row operation in order to convert some elements in the row to the desired value .
Replace (row ) with the actual values of the elements for the row operation .
Simplify (row ).
Step 5
Pivot columns are the columns, which contains pivot positions, so those pivot columns are .
Step 6
A pivot position in a matrix is a position that after row reduction contains a leading . Thus, the leading one in the pivot columns are the pivot positions.
The leading in the pivot columns are the pivot positions
Enter YOUR Problem
Mathway requires javascript and a modern browser.
Cookies & Privacy
This website uses cookies to ensure you get the best experience on our website.
More Information