Linear Algebra Examples

,
Move all terms containing variables to the left side of the equation.
Tap for more steps...
Move to the left side of the equation because it contains a variable.
Move to the left side of the equation because it contains a variable.
Move all terms containing variables to the left side of the equation.
Tap for more steps...
Move to the left side of the equation because it contains a variable.
Move to the left side of the equation because it contains a variable.
Move to the right side of the equation because it does not contain a variable.
Move to the right side of the equation because it does not contain a variable.
Write the system of equations in matrix form.
Find the reduced row echelon form of the matrix.
Tap for more steps...
Perform the row operation on (row ) in order to convert some elements in the row to .
Tap for more steps...
Replace (row ) with the row operation in order to convert some elements in the row to the desired value .
Replace (row ) with the actual values of the elements for the row operation .
Simplify (row ).
Perform the row operation on (row ) in order to convert some elements in the row to .
Tap for more steps...
Replace (row ) with the row operation in order to convert some elements in the row to the desired value .
Replace (row ) with the actual values of the elements for the row operation .
Simplify (row ).
Perform the row operation on (row ) in order to convert some elements in the row to .
Tap for more steps...
Replace (row ) with the row operation in order to convert some elements in the row to the desired value .
Replace (row ) with the actual values of the elements for the row operation .
Simplify (row ).
Perform the row operation on (row ) in order to convert some elements in the row to .
Tap for more steps...
Replace (row ) with the row operation in order to convert some elements in the row to the desired value .
Replace (row ) with the actual values of the elements for the row operation .
Simplify (row ).
Use the result matrix to declare the final solutions to the system of equations.
This expression is the solution set for the system of equations.
Decompose a solution vector by re-arranging each equation represented in the row-reduced form of the augmented matrix by solving for the dependent variable in each row yields the vector equality.
Enter YOUR Problem
Mathway requires javascript and a modern browser.