Linear Algebra Examples

Set up the formula to find the characteristic equation .
Substitute the known values in the formula.
Subtract the eigenvalue times the identity matrix from the original matrix.
Tap for more steps...
Multiply by each element of the matrix.
Simplify each element of the matrix .
Tap for more steps...
Simplify element by multiplying to get .
Simplify element by multiplying to get .
Simplify element by multiplying to get .
Simplify element by multiplying to get .
Combine the similar matrices with each others.
Simplify each element of the matrix .
Tap for more steps...
Combine the same size matrices and by adding the corresponding elements of each.
Simplify element of the matrix.
Simplify element of the matrix.
The determinant of is .
Tap for more steps...
These are both valid notations for the determinant of a matrix.
The determinant of a matrix can be found using the formula .
Simplify the determinant.
Tap for more steps...
Simplify each term.
Tap for more steps...
Expand using the FOIL Method.
Tap for more steps...
Apply the distributive property.
Apply the distributive property.
Apply the distributive property.
Remove parentheses.
Simplify and combine like terms.
Tap for more steps...
Simplify each term.
Tap for more steps...
Move .
Use the power rule to combine exponents.
Add and to get .
Simplify .
Tap for more steps...
Multiply by to get .
Multiply by to get .
Multiply by to get .
Multiply by to get .
Multiply by to get .
Subtract from to get .
Multiply by to get .
Subtract from to get .
Set the characteristic polynomial equal to to find the eigenvalues .
Solve the equation for .
Tap for more steps...
Since does not contain the variable to solve for, move it to the right side of the equation by adding to both sides.
Move to the left side of the equation by subtracting it from both sides.
Use the quadratic formula to find the solutions.
Substitute the values , , and into the quadratic formula and solve for .
Simplify.
Tap for more steps...
Simplify the numerator.
Tap for more steps...
Raise to the power of to get .
Multiply by to get .
Multiply by to get .
Add and to get .
Rewrite as .
Pull terms out from under the radical.
Simplify the denominator.
Tap for more steps...
Rewrite.
Multiply by to get .
Simplify .
The final answer is the combination of both solutions.
Enter YOUR Problem

Enter the email address associated with your Mathway account below and we'll send you a link to reset your password.

Please enter an email address
Please enter a valid email address
The email address you entered was not found in our system
The email address you entered is associated with a Facebook user
We're sorry, we were unable to process your request at this time
Mathway requires javascript and a modern browser.

Please Rate Your Tutor

Could not save your feedback. Please try again.

Please select a rating.

Thanks for your feedback!

  [ x 2     1 2     π     x d x   ]