# Finite Math Examples

, ,

Move to the left side of the equation because it contains a variable.

Move to the left side of the equation because it contains a variable.

Move to the left side of the equation because it contains a variable.

Move to the left side of the equation because it contains a variable.

Represent the system of equations in matrix format.

Set up the determinant by breaking it into smaller components.

The determinant of is .

The determinant of a matrix can be found using the formula .

Simplify the determinant.

Simplify each term.

Multiply by .

Multiply by .

Simplify the expression.

Subtract from .

Multiply by .

The determinant of is .

The determinant of a matrix can be found using the formula .

Simplify the determinant.

Simplify each term.

Multiply by .

Multiply by .

Simplify the expression.

Add and .

Multiply by .

Since the matrix is multiplied by , the determinant is .

Subtract from .

Add and .

Set up the determinant by breaking it into smaller components.

The determinant of is .

The determinant of a matrix can be found using the formula .

Simplify the determinant.

Simplify each term.

Multiply by .

Multiply by .

Simplify the expression.

Subtract from .

Multiply by .

The determinant of is .

The determinant of a matrix can be found using the formula .

Simplify the determinant.

Simplify each term.

Multiply by .

Multiply by .

Simplify the expression.

Add and .

Multiply by .

Since the matrix is multiplied by , the determinant is .

Add and .

Add and .

Set up the determinant by breaking it into smaller components.

The determinant of is .

The determinant of a matrix can be found using the formula .

Simplify the determinant.

Simplify each term.

Multiply by .

Multiply by .

Simplify the expression.

Add and .

Multiply by .

The determinant of is .

The determinant of a matrix can be found using the formula .

Simplify the determinant.

Simplify each term.

Multiply by .

Multiply by .

Simplify the expression.

Add and .

Multiply by .

Since the matrix is multiplied by , the determinant is .

Add and .

Add and .

Set up the determinant by breaking it into smaller components.

The determinant of is .

The determinant of a matrix can be found using the formula .

Simplify the determinant.

Simplify each term.

Multiply by .

Multiply by .

Simplify the expression.

Subtract from .

Multiply by .

The determinant of is .

The determinant of a matrix can be found using the formula .

Simplify the determinant.

Simplify each term.

Multiply by .

Multiply by .

Simplify the expression.

Add and .

Multiply by .

Since the matrix is multiplied by , the determinant is .

Add and .

Add and .

Remove the parentheses from the numerator.

Divide by .

Remove the parentheses from the numerator.

Divide by .

Remove the parentheses from the numerator.

Divide by .

The solution to the system of equations using Cramer's Rule.