# Calculus Examples

Since integration is linear, the integral of with respect to is .

Since is constant with respect to , the integral of with respect to is .

By the Power Rule, the integral of with respect to is .

Write as a fraction with denominator .

Multiply and .

Since is constant with respect to , the integral of with respect to is .

By the Power Rule, the integral of with respect to is .

Write as a fraction with denominator .

Multiply and .

Since is constant with respect to , the integral of with respect to is .

Remove parentheses.

Simplify.

Reorder terms.

Remove parentheses around .