Calculus Examples

Step 1
Differentiate both sides of the equation.
Step 2
Differentiate the left side of the equation.
Tap for more steps...
Step 2.1
Differentiate.
Tap for more steps...
Step 2.1.1
By the Sum Rule, the derivative of with respect to is .
Step 2.1.2
Differentiate using the Power Rule which states that is where .
Step 2.2
Evaluate .
Tap for more steps...
Step 2.2.1
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.2.1.1
To apply the Chain Rule, set as .
Step 2.2.1.2
Differentiate using the Power Rule which states that is where .
Step 2.2.1.3
Replace all occurrences of with .
Step 2.2.2
Rewrite as .
Step 3
Since is constant with respect to , the derivative of with respect to is .
Step 4
Reform the equation by setting the left side equal to the right side.
Step 5
Solve for .
Tap for more steps...
Step 5.1
Subtract from both sides of the equation.
Step 5.2
Divide each term in by and simplify.
Tap for more steps...
Step 5.2.1
Divide each term in by .
Step 5.2.2
Simplify the left side.
Tap for more steps...
Step 5.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 5.2.2.1.1
Cancel the common factor.
Step 5.2.2.1.2
Rewrite the expression.
Step 5.2.2.2
Cancel the common factor of .
Tap for more steps...
Step 5.2.2.2.1
Cancel the common factor.
Step 5.2.2.2.2
Divide by .
Step 5.2.3
Simplify the right side.
Tap for more steps...
Step 5.2.3.1
Cancel the common factor of and .
Tap for more steps...
Step 5.2.3.1.1
Factor out of .
Step 5.2.3.1.2
Cancel the common factors.
Tap for more steps...
Step 5.2.3.1.2.1
Factor out of .
Step 5.2.3.1.2.2
Cancel the common factor.
Step 5.2.3.1.2.3
Rewrite the expression.
Step 5.2.3.2
Move the negative in front of the fraction.
Step 6
Replace with .
Enter YOUR Problem
Mathway requires javascript and a modern browser.