Calculus Examples

Find Where dy/dx is Equal to Zero
Differentiate both sides of the equation.
The derivative of with respect to is .
Differentiate the right side of the equation.
Tap for more steps...
Differentiate.
Tap for more steps...
By the Sum Rule, the derivative of with respect to is .
Differentiate using the Power Rule which states that is where .
Evaluate .
Tap for more steps...
Since is constant with respect to , the derivative of with respect to is .
Differentiate using the Power Rule which states that is where .
Multiply by .
Evaluate .
Tap for more steps...
Since is constant with respect to , the derivative of with respect to is .
Differentiate using the Power Rule which states that is where .
Multiply by .
Reorder terms.
Reform the equation by setting the left side equal to the right side.
Replace with .
Set then solve for in terms of .
Tap for more steps...
Factor using the rational roots test.
Tap for more steps...
If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.
Find every combination of . These are the possible roots of the polynomial function.
Substitute and simplify the expression. In this case, the expression is equal to so is a root of the polynomial.
Tap for more steps...
Substitute into the polynomial.
Raise to the power of .
Multiply by .
Multiply by .
Add and .
Add and .
Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
Divide by .
Write as a set of factors.
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Set the first factor equal to and solve.
Tap for more steps...
Set the first factor equal to .
Subtract from both sides of the equation.
Divide each term by and simplify.
Tap for more steps...
Divide each term in by .
Cancel the common factor of .
Tap for more steps...
Cancel the common factor.
Divide by .
Move the negative in front of the fraction.
Set the next factor equal to and solve.
Tap for more steps...
Set the next factor equal to .
Use the quadratic formula to find the solutions.
Substitute the values , , and into the quadratic formula and solve for .
Simplify.
Tap for more steps...
Simplify the numerator.
Tap for more steps...
Raise to the power of .
Multiply by .
Multiply by .
Subtract from .
Rewrite as .
Rewrite as .
Rewrite as .
Rewrite as .
Pull terms out from under the radical, assuming positive real numbers.
Move to the left of .
Multiply by .
Simplify .
Simplify the expression to solve for the portion of the .
Tap for more steps...
Simplify the numerator.
Tap for more steps...
Raise to the power of .
Multiply by .
Multiply by .
Subtract from .
Rewrite as .
Rewrite as .
Rewrite as .
Rewrite as .
Pull terms out from under the radical, assuming positive real numbers.
Move to the left of .
Multiply by .
Simplify .
Change the to .
Split the fraction into two fractions.
Simplify the expression to solve for the portion of the .
Tap for more steps...
Simplify the numerator.
Tap for more steps...
Raise to the power of .
Multiply by .
Multiply by .
Subtract from .
Rewrite as .
Rewrite as .
Rewrite as .
Rewrite as .
Pull terms out from under the radical, assuming positive real numbers.
Move to the left of .
Multiply by .
Simplify .
Change the to .
Split the fraction into two fractions.
Move the negative in front of the fraction.
The final answer is the combination of both solutions.
The final solution is all the values that make true.
Solve for .
Tap for more steps...
Remove parentheses.
Simplify .
Tap for more steps...
Simplify each term.
Tap for more steps...
Use the power rule to distribute the exponent.
Tap for more steps...
Apply the product rule to .
Apply the product rule to .
Multiply by by adding the exponents.
Tap for more steps...
Move .
Multiply by .
Tap for more steps...
Raise to the power of .
Use the power rule to combine exponents.
Add and .
Raise to the power of .
One to any power is one.
Raise to the power of .
Use the power rule to distribute the exponent.
Tap for more steps...
Apply the product rule to .
Apply the product rule to .
Raise to the power of .
Multiply by .
One to any power is one.
Raise to the power of .
Cancel the common factor of .
Tap for more steps...
Factor out of .
Cancel the common factor.
Rewrite the expression.
Combine fractions.
Tap for more steps...
Combine fractions with similar denominators.
Simplify the expression.
Tap for more steps...
Move the negative in front of the fraction.
Add and .
Divide by .
Add and .
Calculated values cannot contain imaginary components.
is not a valid value for x
Calculated values cannot contain imaginary components.
is not a valid value for x
Find the points where .
Enter YOUR Problem
Mathway requires javascript and a modern browser.
Cookies & Privacy
This website uses cookies to ensure you get the best experience on our website.
More Information