Calculus Examples

Find the inflection points.
Tap for more steps...
Find the second derivative.
Tap for more steps...
Find the first derivative.
Tap for more steps...
By the Sum Rule, the derivative of with respect to is .
Differentiate using the Power Rule which states that is where .
Since is constant with respect to , the derivative of with respect to is .
Add and .
Find the second derivative.
Tap for more steps...
Since is constant with respect to , the derivative of with respect to is .
Differentiate using the Power Rule which states that is where .
Multiply by .
The second derivative of with respect to is .
Set the second derivative equal to then solve the equation .
Tap for more steps...
Set the second derivative equal to .
Divide each term by and simplify.
Tap for more steps...
Divide each term in by .
Cancel the common factor of .
Tap for more steps...
Cancel the common factor.
Divide by .
Divide by .
Take the root of both sides of the to eliminate the exponent on the left side.
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Simplify the right side of the equation.
Tap for more steps...
Rewrite as .
Pull terms out from under the radical.
The absolute value is the distance between a number and zero. The distance between and is .
is equal to .
Find the points where the second derivative is .
Tap for more steps...
Substitute in to find the value of .
Tap for more steps...
Replace the variable with in the expression.
Simplify the result.
Tap for more steps...
Raising to any positive power yields .
Subtract from .
The final answer is .
The point found by substituting in is . This point can be an inflection point.
Split into intervals around the points that could potentially be inflection points.
Substitute a value from the interval into the second derivative to determine if it is increasing or decreasing.
Tap for more steps...
Replace the variable with in the expression.
Simplify the result.
Tap for more steps...
Raise to the power of .
Multiply by .
The final answer is .
At , the second derivative is . Since this is positive, the second derivative is increasing on the interval .
Increasing on since
Increasing on since
Substitute a value from the interval into the second derivative to determine if it is increasing or decreasing.
Tap for more steps...
Replace the variable with in the expression.
Simplify the result.
Tap for more steps...
Raise to the power of .
Multiply by .
The final answer is .
At , the second derivative is . Since this is positive, the second derivative is increasing on the interval .
Increasing on since
Increasing on since
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. There are no points on the graph that satisfy these requirements.
No Inflection Points
No Inflection Points
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Interval Notation:
Set-Builder Notation:
The graph is concave up because the second derivative is positive.
The graph is concave up
Enter YOUR Problem
Mathway requires javascript and a modern browser.
Cookies & Privacy
This website uses cookies to ensure you get the best experience on our website.
More Information