Calculus Examples

Find the inflection points.
Tap for more steps...
Find the second derivative.
Tap for more steps...
Find the first derivative.
Tap for more steps...
By the Sum Rule, the derivative of with respect to is .
Evaluate .
Tap for more steps...
Since is constant with respect to , the derivative of with respect to is .
Differentiate using the Power Rule which states that is where .
Multiply by .
Evaluate .
Tap for more steps...
Since is constant with respect to , the derivative of with respect to is .
Differentiate using the Power Rule which states that is where .
Multiply by .
Since is constant with respect to , the derivative of with respect to is .
Add and .
Find the second derivative.
Tap for more steps...
By the Sum Rule, the derivative of with respect to is .
Evaluate .
Tap for more steps...
Since is constant with respect to , the derivative of with respect to is .
Differentiate using the Power Rule which states that is where .
Multiply by .
Since is constant with respect to , the derivative of with respect to is .
Add and .
The second derivative of with respect to is .
Set the second derivative equal to then solve the equation .
Tap for more steps...
Rewrite the equation as .
Since , there are no solutions.
No solution
No solution
No values found that can make the second derivative equal to .
No Inflection Points
No Inflection Points
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
The graph is concave down because the second derivative is negative.
The graph is concave down
Enter YOUR Problem
Mathway requires javascript and a modern browser.