Calculus Examples
h(x)=x4-x3-6x2
Step 1
Step 1.1
Differentiate.
Step 1.1.1
By the Sum Rule, the derivative of x4-x3-6x2 with respect to x is ddx[x4]+ddx[-x3]+ddx[-6x2].
ddx[x4]+ddx[-x3]+ddx[-6x2]
Step 1.1.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=4.
4x3+ddx[-x3]+ddx[-6x2]
4x3+ddx[-x3]+ddx[-6x2]
Step 1.2
Evaluate ddx[-x3].
Step 1.2.1
Since -1 is constant with respect to x, the derivative of -x3 with respect to x is -ddx[x3].
4x3-ddx[x3]+ddx[-6x2]
Step 1.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=3.
4x3-(3x2)+ddx[-6x2]
Step 1.2.3
Multiply 3 by -1.
4x3-3x2+ddx[-6x2]
4x3-3x2+ddx[-6x2]
Step 1.3
Evaluate ddx[-6x2].
Step 1.3.1
Since -6 is constant with respect to x, the derivative of -6x2 with respect to x is -6ddx[x2].
4x3-3x2-6ddx[x2]
Step 1.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
4x3-3x2-6(2x)
Step 1.3.3
Multiply 2 by -6.
4x3-3x2-12x
4x3-3x2-12x
4x3-3x2-12x
Step 2
Step 2.1
Factor x out of 4x3-3x2-12x.
Step 2.1.1
Factor x out of 4x3.
x(4x2)-3x2-12x=0
Step 2.1.2
Factor x out of -3x2.
x(4x2)+x(-3x)-12x=0
Step 2.1.3
Factor x out of -12x.
x(4x2)+x(-3x)+x⋅-12=0
Step 2.1.4
Factor x out of x(4x2)+x(-3x).
x(4x2-3x)+x⋅-12=0
Step 2.1.5
Factor x out of x(4x2-3x)+x⋅-12.
x(4x2-3x-12)=0
x(4x2-3x-12)=0
Step 2.2
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
x=0
4x2-3x-12=0
Step 2.3
Set x equal to 0.
x=0
Step 2.4
Set 4x2-3x-12 equal to 0 and solve for x.
Step 2.4.1
Set 4x2-3x-12 equal to 0.
4x2-3x-12=0
Step 2.4.2
Solve 4x2-3x-12=0 for x.
Step 2.4.2.1
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 2.4.2.2
Substitute the values a=4, b=-3, and c=-12 into the quadratic formula and solve for x.
3±√(-3)2-4⋅(4⋅-12)2⋅4
Step 2.4.2.3
Simplify.
Step 2.4.2.3.1
Simplify the numerator.
Step 2.4.2.3.1.1
Raise -3 to the power of 2.
x=3±√9-4⋅4⋅-122⋅4
Step 2.4.2.3.1.2
Multiply -4⋅4⋅-12.
Step 2.4.2.3.1.2.1
Multiply -4 by 4.
x=3±√9-16⋅-122⋅4
Step 2.4.2.3.1.2.2
Multiply -16 by -12.
x=3±√9+1922⋅4
x=3±√9+1922⋅4
Step 2.4.2.3.1.3
Add 9 and 192.
x=3±√2012⋅4
x=3±√2012⋅4
Step 2.4.2.3.2
Multiply 2 by 4.
x=3±√2018
x=3±√2018
Step 2.4.2.4
Simplify the expression to solve for the + portion of the ±.
Step 2.4.2.4.1
Simplify the numerator.
Step 2.4.2.4.1.1
Raise -3 to the power of 2.
x=3±√9-4⋅4⋅-122⋅4
Step 2.4.2.4.1.2
Multiply -4⋅4⋅-12.
Step 2.4.2.4.1.2.1
Multiply -4 by 4.
x=3±√9-16⋅-122⋅4
Step 2.4.2.4.1.2.2
Multiply -16 by -12.
x=3±√9+1922⋅4
x=3±√9+1922⋅4
Step 2.4.2.4.1.3
Add 9 and 192.
x=3±√2012⋅4
x=3±√2012⋅4
Step 2.4.2.4.2
Multiply 2 by 4.
x=3±√2018
Step 2.4.2.4.3
Change the ± to +.
x=3+√2018
x=3+√2018
Step 2.4.2.5
Simplify the expression to solve for the - portion of the ±.
Step 2.4.2.5.1
Simplify the numerator.
Step 2.4.2.5.1.1
Raise -3 to the power of 2.
x=3±√9-4⋅4⋅-122⋅4
Step 2.4.2.5.1.2
Multiply -4⋅4⋅-12.
Step 2.4.2.5.1.2.1
Multiply -4 by 4.
x=3±√9-16⋅-122⋅4
Step 2.4.2.5.1.2.2
Multiply -16 by -12.
x=3±√9+1922⋅4
x=3±√9+1922⋅4
Step 2.4.2.5.1.3
Add 9 and 192.
x=3±√2012⋅4
x=3±√2012⋅4
Step 2.4.2.5.2
Multiply 2 by 4.
x=3±√2018
Step 2.4.2.5.3
Change the ± to -.
x=3-√2018
x=3-√2018
Step 2.4.2.6
The final answer is the combination of both solutions.
x=3+√2018,3-√2018
x=3+√2018,3-√2018
x=3+√2018,3-√2018
Step 2.5
The final solution is all the values that make x(4x2-3x-12)=0 true.
x=0,3+√2018,3-√2018
x=0,3+√2018,3-√2018
Step 3
Split (-∞,∞) into separate intervals around the x values that make the first derivative 0 or undefined.
(-∞,3-√2018)∪(3-√2018,0)∪(0,3+√2018)∪(3+√2018,∞)
Step 4
Step 4.1
Replace the variable x with -4 in the expression.
h′(-4)=4(-4)3-3(-4)2-12⋅-4
Step 4.2
Simplify the result.
Step 4.2.1
Simplify each term.
Step 4.2.1.1
Raise -4 to the power of 3.
h′(-4)=4⋅-64-3(-4)2-12⋅-4
Step 4.2.1.2
Multiply 4 by -64.
h′(-4)=-256-3(-4)2-12⋅-4
Step 4.2.1.3
Raise -4 to the power of 2.
h′(-4)=-256-3⋅16-12⋅-4
Step 4.2.1.4
Multiply -3 by 16.
h′(-4)=-256-48-12⋅-4
Step 4.2.1.5
Multiply -12 by -4.
h′(-4)=-256-48+48
h′(-4)=-256-48+48
Step 4.2.2
Simplify by adding and subtracting.
Step 4.2.2.1
Subtract 48 from -256.
h′(-4)=-304+48
Step 4.2.2.2
Add -304 and 48.
h′(-4)=-256
h′(-4)=-256
Step 4.2.3
The final answer is -256.
-256
-256
-256
Step 5
Step 5.1
Replace the variable x with -1 in the expression.
h′(-1)=4(-1)3-3(-1)2-12⋅-1
Step 5.2
Simplify the result.
Step 5.2.1
Simplify each term.
Step 5.2.1.1
Raise -1 to the power of 3.
h′(-1)=4⋅-1-3(-1)2-12⋅-1
Step 5.2.1.2
Multiply 4 by -1.
h′(-1)=-4-3(-1)2-12⋅-1
Step 5.2.1.3
Raise -1 to the power of 2.
h′(-1)=-4-3⋅1-12⋅-1
Step 5.2.1.4
Multiply -3 by 1.
h′(-1)=-4-3-12⋅-1
Step 5.2.1.5
Multiply -12 by -1.
h′(-1)=-4-3+12
h′(-1)=-4-3+12
Step 5.2.2
Simplify by adding and subtracting.
Step 5.2.2.1
Subtract 3 from -4.
h′(-1)=-7+12
Step 5.2.2.2
Add -7 and 12.
h′(-1)=5
h′(-1)=5
Step 5.2.3
The final answer is 5.
5
5
5
Step 6
Step 6.1
Replace the variable x with 1 in the expression.
h′(1)=4(1)3-3(1)2-12⋅1
Step 6.2
Simplify the result.
Step 6.2.1
Simplify each term.
Step 6.2.1.1
One to any power is one.
h′(1)=4⋅1-3(1)2-12⋅1
Step 6.2.1.2
Multiply 4 by 1.
h′(1)=4-3(1)2-12⋅1
Step 6.2.1.3
One to any power is one.
h′(1)=4-3⋅1-12⋅1
Step 6.2.1.4
Multiply -3 by 1.
h′(1)=4-3-12⋅1
Step 6.2.1.5
Multiply -12 by 1.
h′(1)=4-3-12
h′(1)=4-3-12
Step 6.2.2
Simplify by subtracting numbers.
Step 6.2.2.1
Subtract 3 from 4.
h′(1)=1-12
Step 6.2.2.2
Subtract 12 from 1.
h′(1)=-11
h′(1)=-11
Step 6.2.3
The final answer is -11.
-11
-11
-11
Step 7
Step 7.1
Replace the variable x with 5 in the expression.
h′(5)=4(5)3-3(5)2-12⋅5
Step 7.2
Simplify the result.
Step 7.2.1
Simplify each term.
Step 7.2.1.1
Raise 5 to the power of 3.
h′(5)=4⋅125-3(5)2-12⋅5
Step 7.2.1.2
Multiply 4 by 125.
h′(5)=500-3(5)2-12⋅5
Step 7.2.1.3
Raise 5 to the power of 2.
h′(5)=500-3⋅25-12⋅5
Step 7.2.1.4
Multiply -3 by 25.
h′(5)=500-75-12⋅5
Step 7.2.1.5
Multiply -12 by 5.
h′(5)=500-75-60
h′(5)=500-75-60
Step 7.2.2
Simplify by subtracting numbers.
Step 7.2.2.1
Subtract 75 from 500.
h′(5)=425-60
Step 7.2.2.2
Subtract 60 from 425.
h′(5)=365
h′(5)=365
Step 7.2.3
The final answer is 365.
365
365
365
Step 8
Since the first derivative changed signs from negative to positive around x=3-√2018, then there is a turning point at x=3-√2018.
Step 9
Step 9.1
Find h(3-√2018) to find the y-coordinate of 3-√2018.
Step 9.1.1
Replace the variable x with 3-√2018 in the expression.
h(3-√2018)=(3-√2018)4-(3-√2018)3-6(3-√2018)2
Step 9.1.2
Simplify (3-√2018)4-(3-√2018)3-6(3-√2018)2.
Step 9.1.2.1
Remove parentheses.
(3-√2018)4-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2
Simplify each term.
Step 9.1.2.2.1
Apply the product rule to 3-√2018.
(3-√201)484-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.2
Raise 8 to the power of 4.
(3-√201)44096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.3
Use the Binomial Theorem.
34+4⋅33(-√201)+6⋅32(-√201)2+4⋅3(-√201)3+(-√201)44096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4
Simplify each term.
Step 9.1.2.2.4.1
Raise 3 to the power of 4.
81+4⋅33(-√201)+6⋅32(-√201)2+4⋅3(-√201)3+(-√201)44096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.2
Raise 3 to the power of 3.
81+4⋅27(-√201)+6⋅32(-√201)2+4⋅3(-√201)3+(-√201)44096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.3
Multiply 4 by 27.
81+108(-√201)+6⋅32(-√201)2+4⋅3(-√201)3+(-√201)44096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.4
Multiply -1 by 108.
81-108√201+6⋅32(-√201)2+4⋅3(-√201)3+(-√201)44096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.5
Raise 3 to the power of 2.
81-108√201+6⋅9(-√201)2+4⋅3(-√201)3+(-√201)44096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.6
Multiply 6 by 9.
81-108√201+54(-√201)2+4⋅3(-√201)3+(-√201)44096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.7
Apply the product rule to -√201.
81-108√201+54((-1)2√2012)+4⋅3(-√201)3+(-√201)44096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.8
Raise -1 to the power of 2.
81-108√201+54(1√2012)+4⋅3(-√201)3+(-√201)44096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.9
Multiply √2012 by 1.
81-108√201+54√2012+4⋅3(-√201)3+(-√201)44096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.10
Rewrite √2012 as 201.
Step 9.1.2.2.4.10.1
Use n√ax=axn to rewrite √201 as 20112.
81-108√201+54(20112)2+4⋅3(-√201)3+(-√201)44096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.10.2
Apply the power rule and multiply exponents, (am)n=amn.
81-108√201+54⋅20112⋅2+4⋅3(-√201)3+(-√201)44096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.10.3
Combine 12 and 2.
81-108√201+54⋅20122+4⋅3(-√201)3+(-√201)44096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.10.4
Cancel the common factor of 2.
Step 9.1.2.2.4.10.4.1
Cancel the common factor.
81-108√201+54⋅20122+4⋅3(-√201)3+(-√201)44096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.10.4.2
Rewrite the expression.
81-108√201+54⋅2011+4⋅3(-√201)3+(-√201)44096-(3-√2018)3-6(3-√2018)2
81-108√201+54⋅2011+4⋅3(-√201)3+(-√201)44096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.10.5
Evaluate the exponent.
81-108√201+54⋅201+4⋅3(-√201)3+(-√201)44096-(3-√2018)3-6(3-√2018)2
81-108√201+54⋅201+4⋅3(-√201)3+(-√201)44096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.11
Multiply 54 by 201.
81-108√201+10854+4⋅3(-√201)3+(-√201)44096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.12
Multiply 4 by 3.
81-108√201+10854+12(-√201)3+(-√201)44096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.13
Apply the product rule to -√201.
81-108√201+10854+12((-1)3√2013)+(-√201)44096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.14
Raise -1 to the power of 3.
81-108√201+10854+12(-√2013)+(-√201)44096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.15
Rewrite √2013 as √2013.
81-108√201+10854+12(-√2013)+(-√201)44096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.16
Raise 201 to the power of 3.
81-108√201+10854+12(-√8120601)+(-√201)44096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.17
Rewrite 8120601 as 2012⋅201.
Step 9.1.2.2.4.17.1
Factor 40401 out of 8120601.
81-108√201+10854+12(-√40401(201))+(-√201)44096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.17.2
Rewrite 40401 as 2012.
81-108√201+10854+12(-√2012⋅201)+(-√201)44096-(3-√2018)3-6(3-√2018)2
81-108√201+10854+12(-√2012⋅201)+(-√201)44096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.18
Pull terms out from under the radical.
81-108√201+10854+12(-(201√201))+(-√201)44096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.19
Multiply 201 by -1.
81-108√201+10854+12(-201√201)+(-√201)44096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.20
Multiply -201 by 12.
81-108√201+10854-2412√201+(-√201)44096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.21
Apply the product rule to -√201.
81-108√201+10854-2412√201+(-1)4√20144096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.22
Raise -1 to the power of 4.
81-108√201+10854-2412√201+1√20144096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.23
Multiply √2014 by 1.
81-108√201+10854-2412√201+√20144096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.24
Rewrite √2014 as 2012.
Step 9.1.2.2.4.24.1
Use n√ax=axn to rewrite √201 as 20112.
81-108√201+10854-2412√201+(20112)44096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.24.2
Apply the power rule and multiply exponents, (am)n=amn.
81-108√201+10854-2412√201+20112⋅44096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.24.3
Combine 12 and 4.
81-108√201+10854-2412√201+201424096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.24.4
Cancel the common factor of 4 and 2.
Step 9.1.2.2.4.24.4.1
Factor 2 out of 4.
81-108√201+10854-2412√201+2012⋅224096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.24.4.2
Cancel the common factors.
Step 9.1.2.2.4.24.4.2.1
Factor 2 out of 2.
81-108√201+10854-2412√201+2012⋅22(1)4096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.24.4.2.2
Cancel the common factor.
81-108√201+10854-2412√201+2012⋅22⋅14096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.24.4.2.3
Rewrite the expression.
81-108√201+10854-2412√201+201214096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.24.4.2.4
Divide 2 by 1.
81-108√201+10854-2412√201+20124096-(3-√2018)3-6(3-√2018)2
81-108√201+10854-2412√201+20124096-(3-√2018)3-6(3-√2018)2
81-108√201+10854-2412√201+20124096-(3-√2018)3-6(3-√2018)2
81-108√201+10854-2412√201+20124096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.4.25
Raise 201 to the power of 2.
81-108√201+10854-2412√201+404014096-(3-√2018)3-6(3-√2018)2
81-108√201+10854-2412√201+404014096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.5
Add 81 and 10854.
10935-108√201-2412√201+404014096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.6
Add 10935 and 40401.
51336-108√201-2412√2014096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.7
Subtract 2412√201 from -108√201.
51336-2520√2014096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.8
Cancel the common factor of 51336-2520√201 and 4096.
Step 9.1.2.2.8.1
Factor 8 out of 51336.
8(6417)-2520√2014096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.8.2
Factor 8 out of -2520√201.
8(6417)+8(-315√201)4096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.8.3
Factor 8 out of 8(6417)+8(-315√201).
8(6417-315√201)4096-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.8.4
Cancel the common factors.
Step 9.1.2.2.8.4.1
Factor 8 out of 4096.
8(6417-315√201)8⋅512-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.8.4.2
Cancel the common factor.
8(6417-315√201)8⋅512-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.8.4.3
Rewrite the expression.
6417-315√201512-(3-√2018)3-6(3-√2018)2
6417-315√201512-(3-√2018)3-6(3-√2018)2
6417-315√201512-(3-√2018)3-6(3-√2018)2
Step 9.1.2.2.9
Apply the product rule to 3-√2018.
6417-315√201512-(3-√201)383-6(3-√2018)2
Step 9.1.2.2.10
Raise 8 to the power of 3.
6417-315√201512-(3-√201)3512-6(3-√2018)2
Step 9.1.2.2.11
Use the Binomial Theorem.
6417-315√201512-33+3⋅32(-√201)+3⋅3(-√201)2+(-√201)3512-6(3-√2018)2
Step 9.1.2.2.12
Simplify each term.
Step 9.1.2.2.12.1
Raise 3 to the power of 3.
6417-315√201512-27+3⋅32(-√201)+3⋅3(-√201)2+(-√201)3512-6(3-√2018)2
Step 9.1.2.2.12.2
Multiply 3 by 32 by adding the exponents.
Step 9.1.2.2.12.2.1
Multiply 3 by 32.
Step 9.1.2.2.12.2.1.1
Raise 3 to the power of 1.
6417-315√201512-27+31⋅32(-√201)+3⋅3(-√201)2+(-√201)3512-6(3-√2018)2
Step 9.1.2.2.12.2.1.2
Use the power rule aman=am+n to combine exponents.
6417-315√201512-27+31+2(-√201)+3⋅3(-√201)2+(-√201)3512-6(3-√2018)2
6417-315√201512-27+31+2(-√201)+3⋅3(-√201)2+(-√201)3512-6(3-√2018)2
Step 9.1.2.2.12.2.2
Add 1 and 2.
6417-315√201512-27+33(-√201)+3⋅3(-√201)2+(-√201)3512-6(3-√2018)2
6417-315√201512-27+33(-√201)+3⋅3(-√201)2+(-√201)3512-6(3-√2018)2
Step 9.1.2.2.12.3
Raise 3 to the power of 3.
6417-315√201512-27+27(-√201)+3⋅3(-√201)2+(-√201)3512-6(3-√2018)2
Step 9.1.2.2.12.4
Multiply -1 by 27.
6417-315√201512-27-27√201+3⋅3(-√201)2+(-√201)3512-6(3-√2018)2
Step 9.1.2.2.12.5
Multiply 3 by 3.
6417-315√201512-27-27√201+9(-√201)2+(-√201)3512-6(3-√2018)2
Step 9.1.2.2.12.6
Apply the product rule to -√201.
6417-315√201512-27-27√201+9((-1)2√2012)+(-√201)3512-6(3-√2018)2
Step 9.1.2.2.12.7
Raise -1 to the power of 2.
6417-315√201512-27-27√201+9(1√2012)+(-√201)3512-6(3-√2018)2
Step 9.1.2.2.12.8
Multiply √2012 by 1.
6417-315√201512-27-27√201+9√2012+(-√201)3512-6(3-√2018)2
Step 9.1.2.2.12.9
Rewrite √2012 as 201.
Step 9.1.2.2.12.9.1
Use n√ax=axn to rewrite √201 as 20112.
6417-315√201512-27-27√201+9(20112)2+(-√201)3512-6(3-√2018)2
Step 9.1.2.2.12.9.2
Apply the power rule and multiply exponents, (am)n=amn.
6417-315√201512-27-27√201+9⋅20112⋅2+(-√201)3512-6(3-√2018)2
Step 9.1.2.2.12.9.3
Combine 12 and 2.
6417-315√201512-27-27√201+9⋅20122+(-√201)3512-6(3-√2018)2
Step 9.1.2.2.12.9.4
Cancel the common factor of 2.
Step 9.1.2.2.12.9.4.1
Cancel the common factor.
6417-315√201512-27-27√201+9⋅20122+(-√201)3512-6(3-√2018)2
Step 9.1.2.2.12.9.4.2
Rewrite the expression.
6417-315√201512-27-27√201+9⋅2011+(-√201)3512-6(3-√2018)2
6417-315√201512-27-27√201+9⋅2011+(-√201)3512-6(3-√2018)2
Step 9.1.2.2.12.9.5
Evaluate the exponent.
6417-315√201512-27-27√201+9⋅201+(-√201)3512-6(3-√2018)2
6417-315√201512-27-27√201+9⋅201+(-√201)3512-6(3-√2018)2
Step 9.1.2.2.12.10
Multiply 9 by 201.
6417-315√201512-27-27√201+1809+(-√201)3512-6(3-√2018)2
Step 9.1.2.2.12.11
Apply the product rule to -√201.
6417-315√201512-27-27√201+1809+(-1)3√2013512-6(3-√2018)2
Step 9.1.2.2.12.12
Raise -1 to the power of 3.
6417-315√201512-27-27√201+1809-√2013512-6(3-√2018)2
Step 9.1.2.2.12.13
Rewrite √2013 as √2013.
6417-315√201512-27-27√201+1809-√2013512-6(3-√2018)2
Step 9.1.2.2.12.14
Raise 201 to the power of 3.
6417-315√201512-27-27√201+1809-√8120601512-6(3-√2018)2
Step 9.1.2.2.12.15
Rewrite 8120601 as 2012⋅201.
Step 9.1.2.2.12.15.1
Factor 40401 out of 8120601.
6417-315√201512-27-27√201+1809-√40401(201)512-6(3-√2018)2
Step 9.1.2.2.12.15.2
Rewrite 40401 as 2012.
6417-315√201512-27-27√201+1809-√2012⋅201512-6(3-√2018)2
6417-315√201512-27-27√201+1809-√2012⋅201512-6(3-√2018)2
Step 9.1.2.2.12.16
Pull terms out from under the radical.
6417-315√201512-27-27√201+1809-(201√201)512-6(3-√2018)2
Step 9.1.2.2.12.17
Multiply 201 by -1.
6417-315√201512-27-27√201+1809-201√201512-6(3-√2018)2
6417-315√201512-27-27√201+1809-201√201512-6(3-√2018)2
Step 9.1.2.2.13
Add 27 and 1809.
6417-315√201512-1836-27√201-201√201512-6(3-√2018)2
Step 9.1.2.2.14
Subtract 201√201 from -27√201.
6417-315√201512-1836-228√201512-6(3-√2018)2
Step 9.1.2.2.15
Cancel the common factor of 1836-228√201 and 512.
Step 9.1.2.2.15.1
Factor 4 out of 1836.
6417-315√201512-4(459)-228√201512-6(3-√2018)2
Step 9.1.2.2.15.2
Factor 4 out of -228√201.
6417-315√201512-4(459)+4(-57√201)512-6(3-√2018)2
Step 9.1.2.2.15.3
Factor 4 out of 4(459)+4(-57√201).
6417-315√201512-4(459-57√201)512-6(3-√2018)2
Step 9.1.2.2.15.4
Cancel the common factors.
Step 9.1.2.2.15.4.1
Factor 4 out of 512.
6417-315√201512-4(459-57√201)4⋅128-6(3-√2018)2
Step 9.1.2.2.15.4.2
Cancel the common factor.
6417-315√201512-4(459-57√201)4⋅128-6(3-√2018)2
Step 9.1.2.2.15.4.3
Rewrite the expression.
6417-315√201512-459-57√201128-6(3-√2018)2
6417-315√201512-459-57√201128-6(3-√2018)2
6417-315√201512-459-57√201128-6(3-√2018)2
Step 9.1.2.2.16
Apply the product rule to 3-√2018.
6417-315√201512-459-57√201128-6(3-√201)282
Step 9.1.2.2.17
Raise 8 to the power of 2.
6417-315√201512-459-57√201128-6(3-√201)264
Step 9.1.2.2.18
Cancel the common factor of 2.
Step 9.1.2.2.18.1
Factor 2 out of -6.
6417-315√201512-459-57√201128+2(-3)(3-√201)264
Step 9.1.2.2.18.2
Factor 2 out of 64.
6417-315√201512-459-57√201128+2⋅-3(3-√201)22⋅32
Step 9.1.2.2.18.3
Cancel the common factor.
6417-315√201512-459-57√201128+2⋅-3(3-√201)22⋅32
Step 9.1.2.2.18.4
Rewrite the expression.
6417-315√201512-459-57√201128-3(3-√201)232
6417-315√201512-459-57√201128-3(3-√201)232
Step 9.1.2.2.19
Combine -3 and (3-√201)232.
6417-315√201512-459-57√201128+-3(3-√201)232
Step 9.1.2.2.20
Rewrite (3-√201)2 as (3-√201)(3-√201).
6417-315√201512-459-57√201128+-3((3-√201)(3-√201))32
Step 9.1.2.2.21
Expand (3-√201)(3-√201) using the FOIL Method.
Step 9.1.2.2.21.1
Apply the distributive property.
6417-315√201512-459-57√201128+-3(3(3-√201)-√201(3-√201))32
Step 9.1.2.2.21.2
Apply the distributive property.
6417-315√201512-459-57√201128+-3(3⋅3+3(-√201)-√201(3-√201))32
Step 9.1.2.2.21.3
Apply the distributive property.
6417-315√201512-459-57√201128+-3(3⋅3+3(-√201)-√201⋅3-√201(-√201))32
6417-315√201512-459-57√201128+-3(3⋅3+3(-√201)-√201⋅3-√201(-√201))32
Step 9.1.2.2.22
Simplify and combine like terms.
Step 9.1.2.2.22.1
Simplify each term.
Step 9.1.2.2.22.1.1
Multiply 3 by 3.
6417-315√201512-459-57√201128+-3(9+3(-√201)-√201⋅3-√201(-√201))32
Step 9.1.2.2.22.1.2
Multiply -1 by 3.
6417-315√201512-459-57√201128+-3(9-3√201-√201⋅3-√201(-√201))32
Step 9.1.2.2.22.1.3
Multiply 3 by -1.
6417-315√201512-459-57√201128+-3(9-3√201-3√201-√201(-√201))32
Step 9.1.2.2.22.1.4
Multiply -√201(-√201).
Step 9.1.2.2.22.1.4.1
Multiply -1 by -1.
6417-315√201512-459-57√201128+-3(9-3√201-3√201+1√201√201)32
Step 9.1.2.2.22.1.4.2
Multiply √201 by 1.
6417-315√201512-459-57√201128+-3(9-3√201-3√201+√201√201)32
Step 9.1.2.2.22.1.4.3
Raise √201 to the power of 1.
6417-315√201512-459-57√201128+-3(9-3√201-3√201+√2011√201)32
Step 9.1.2.2.22.1.4.4
Raise √201 to the power of 1.
6417-315√201512-459-57√201128+-3(9-3√201-3√201+√2011√2011)32
Step 9.1.2.2.22.1.4.5
Use the power rule aman=am+n to combine exponents.
6417-315√201512-459-57√201128+-3(9-3√201-3√201+√2011+1)32
Step 9.1.2.2.22.1.4.6
Add 1 and 1.
6417-315√201512-459-57√201128+-3(9-3√201-3√201+√2012)32
6417-315√201512-459-57√201128+-3(9-3√201-3√201+√2012)32
Step 9.1.2.2.22.1.5
Rewrite √2012 as 201.
Step 9.1.2.2.22.1.5.1
Use n√ax=axn to rewrite √201 as 20112.
6417-315√201512-459-57√201128+-3(9-3√201-3√201+(20112)2)32
Step 9.1.2.2.22.1.5.2
Apply the power rule and multiply exponents, (am)n=amn.
6417-315√201512-459-57√201128+-3(9-3√201-3√201+20112⋅2)32
Step 9.1.2.2.22.1.5.3
Combine 12 and 2.
6417-315√201512-459-57√201128+-3(9-3√201-3√201+20122)32
Step 9.1.2.2.22.1.5.4
Cancel the common factor of 2.
Step 9.1.2.2.22.1.5.4.1
Cancel the common factor.
6417-315√201512-459-57√201128+-3(9-3√201-3√201+20122)32
Step 9.1.2.2.22.1.5.4.2
Rewrite the expression.
6417-315√201512-459-57√201128+-3(9-3√201-3√201+2011)32
6417-315√201512-459-57√201128+-3(9-3√201-3√201+2011)32
Step 9.1.2.2.22.1.5.5
Evaluate the exponent.
6417-315√201512-459-57√201128+-3(9-3√201-3√201+201)32
6417-315√201512-459-57√201128+-3(9-3√201-3√201+201)32
6417-315√201512-459-57√201128+-3(9-3√201-3√201+201)32
Step 9.1.2.2.22.2
Add 9 and 201.
6417-315√201512-459-57√201128+-3(210-3√201-3√201)32
Step 9.1.2.2.22.3
Subtract 3√201 from -3√201.
6417-315√201512-459-57√201128+-3(210-6√201)32
6417-315√201512-459-57√201128+-3(210-6√201)32
Step 9.1.2.2.23
Cancel the common factor of 210-6√201 and 32.
Step 9.1.2.2.23.1
Factor 2 out of -3(210-6√201).
6417-315√201512-459-57√201128+2(-3(105-3√201))32
Step 9.1.2.2.23.2
Cancel the common factors.
Step 9.1.2.2.23.2.1
Factor 2 out of 32.
6417-315√201512-459-57√201128+2(-3(105-3√201))2(16)
Step 9.1.2.2.23.2.2
Cancel the common factor.
6417-315√201512-459-57√201128+2(-3(105-3√201))2⋅16
Step 9.1.2.2.23.2.3
Rewrite the expression.
6417-315√201512-459-57√201128+-3(105-3√201)16
6417-315√201512-459-57√201128+-3(105-3√201)16
6417-315√201512-459-57√201128+-3(105-3√201)16
Step 9.1.2.2.24
Move the negative in front of the fraction.
6417-315√201512-459-57√201128-3(105-3√201)16
6417-315√201512-459-57√201128-3(105-3√201)16
Step 9.1.2.3
Find the common denominator.
Step 9.1.2.3.1
Multiply 459-57√201128 by 44.
6417-315√201512-(459-57√201128⋅44)-3(105-3√201)16
Step 9.1.2.3.2
Multiply 459-57√201128 by 44.
6417-315√201512-(459-57√201)⋅4128⋅4-3(105-3√201)16
Step 9.1.2.3.3
Multiply 3(105-3√201)16 by 3232.
6417-315√201512-(459-57√201)⋅4128⋅4-(3(105-3√201)16⋅3232)
Step 9.1.2.3.4
Multiply 3(105-3√201)16 by 3232.
6417-315√201512-(459-57√201)⋅4128⋅4-3(105-3√201)⋅3216⋅32
Step 9.1.2.3.5
Reorder the factors of 128⋅4.
6417-315√201512-(459-57√201)⋅44⋅128-3(105-3√201)⋅3216⋅32
Step 9.1.2.3.6
Multiply 4 by 128.
6417-315√201512-(459-57√201)⋅4512-3(105-3√201)⋅3216⋅32
Step 9.1.2.3.7
Multiply 16 by 32.
6417-315√201512-(459-57√201)⋅4512-3(105-3√201)⋅32512
6417-315√201512-(459-57√201)⋅4512-3(105-3√201)⋅32512
Step 9.1.2.4
Combine the numerators over the common denominator.
6417-315√201-(459-57√201)⋅4-3(105-3√201)⋅32512
Step 9.1.2.5
Simplify each term.
Step 9.1.2.5.1
Apply the distributive property.
6417-315√201+(-1⋅459-(-57√201))⋅4-3(105-3√201)⋅32512
Step 9.1.2.5.2
Multiply -1 by 459.
6417-315√201+(-459-(-57√201))⋅4-3(105-3√201)⋅32512
Step 9.1.2.5.3
Multiply -57 by -1.
6417-315√201+(-459+57√201)⋅4-3(105-3√201)⋅32512
Step 9.1.2.5.4
Apply the distributive property.
6417-315√201-459⋅4+57√201⋅4-3(105-3√201)⋅32512
Step 9.1.2.5.5
Multiply -459 by 4.
6417-315√201-1836+57√201⋅4-3(105-3√201)⋅32512
Step 9.1.2.5.6
Multiply 4 by 57.
6417-315√201-1836+228√201-3(105-3√201)⋅32512
Step 9.1.2.5.7
Apply the distributive property.
6417-315√201-1836+228√201+(-3⋅105-3(-3√201))⋅32512
Step 9.1.2.5.8
Multiply -3 by 105.
6417-315√201-1836+228√201+(-315-3(-3√201))⋅32512
Step 9.1.2.5.9
Multiply -3 by -3.
6417-315√201-1836+228√201+(-315+9√201)⋅32512
Step 9.1.2.5.10
Apply the distributive property.
6417-315√201-1836+228√201-315⋅32+9√201⋅32512
Step 9.1.2.5.11
Multiply -315 by 32.
6417-315√201-1836+228√201-10080+9√201⋅32512
Step 9.1.2.5.12
Multiply 32 by 9.
6417-315√201-1836+228√201-10080+288√201512
6417-315√201-1836+228√201-10080+288√201512
Step 9.1.2.6
Simplify terms.
Step 9.1.2.6.1
Subtract 1836 from 6417.
4581-315√201+228√201-10080+288√201512
Step 9.1.2.6.2
Subtract 10080 from 4581.
-5499-315√201+228√201+288√201512
Step 9.1.2.6.3
Add -315√201 and 228√201.
-5499-87√201+288√201512
Step 9.1.2.6.4
Add -87√201 and 288√201.
-5499+201√201512
Step 9.1.2.6.5
Rewrite -5499 as -1(5499).
-1(5499)+201√201512
Step 9.1.2.6.6
Factor -1 out of 201√201.
-1(5499)-(-201√201)512
Step 9.1.2.6.7
Factor -1 out of -1(5499)-(-201√201).
-1(5499-201√201)512
Step 9.1.2.6.8
Move the negative in front of the fraction.
-5499-201√201512
-5499-201√201512
-5499-201√201512
-5499-201√201512
Step 9.2
Write the x and y coordinates in point form.
(3-√2018,-5499-201√201512)
(3-√2018,-5499-201√201512)
Step 10
Since the first derivative changed signs from positive to negative around x=0, then there is a turning point at x=0.
Step 11
Step 11.1
Find h(0) to find the y-coordinate of 0.
Step 11.1.1
Replace the variable x with 0 in the expression.
h(0)=(0)4-(0)3-6(0)2
Step 11.1.2
Simplify (0)4-(0)3-6(0)2.
Step 11.1.2.1
Remove parentheses.
(0)4-(0)3-6(0)2
Step 11.1.2.2
Simplify each term.
Step 11.1.2.2.1
Raising 0 to any positive power yields 0.
0-(0)3-6(0)2
Step 11.1.2.2.2
Raising 0 to any positive power yields 0.
0-0-6(0)2
Step 11.1.2.2.3
Multiply -1 by 0.
0+0-6(0)2
Step 11.1.2.2.4
Raising 0 to any positive power yields 0.
0+0-6⋅0
Step 11.1.2.2.5
Multiply -6 by 0.
0+0+0
0+0+0
Step 11.1.2.3
Simplify by adding numbers.
Step 11.1.2.3.1
Add 0 and 0.
0+0
Step 11.1.2.3.2
Add 0 and 0.
0
0
0
0
Step 11.2
Write the x and y coordinates in point form.
(0,0)
(0,0)
Step 12
Since the first derivative changed signs from negative to positive around x=3+√2018, then there is a turning point at x=3+√2018.
Step 13
Step 13.1
Find h(3+√2018) to find the y-coordinate of 3+√2018.
Step 13.1.1
Replace the variable x with 3+√2018 in the expression.
h(3+√2018)=(3+√2018)4-(3+√2018)3-6(3+√2018)2
Step 13.1.2
Simplify (3+√2018)4-(3+√2018)3-6(3+√2018)2.
Step 13.1.2.1
Remove parentheses.
(3+√2018)4-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2
Simplify each term.
Step 13.1.2.2.1
Apply the product rule to 3+√2018.
(3+√201)484-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.2
Raise 8 to the power of 4.
(3+√201)44096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.3
Use the Binomial Theorem.
34+4⋅33√201+6⋅32√2012+4⋅3√2013+√20144096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.4
Simplify each term.
Step 13.1.2.2.4.1
Raise 3 to the power of 4.
81+4⋅33√201+6⋅32√2012+4⋅3√2013+√20144096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.4.2
Raise 3 to the power of 3.
81+4⋅27√201+6⋅32√2012+4⋅3√2013+√20144096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.4.3
Multiply 4 by 27.
81+108√201+6⋅32√2012+4⋅3√2013+√20144096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.4.4
Raise 3 to the power of 2.
81+108√201+6⋅9√2012+4⋅3√2013+√20144096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.4.5
Multiply 6 by 9.
81+108√201+54√2012+4⋅3√2013+√20144096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.4.6
Rewrite √2012 as 201.
Step 13.1.2.2.4.6.1
Use n√ax=axn to rewrite √201 as 20112.
81+108√201+54(20112)2+4⋅3√2013+√20144096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.4.6.2
Apply the power rule and multiply exponents, (am)n=amn.
81+108√201+54⋅20112⋅2+4⋅3√2013+√20144096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.4.6.3
Combine 12 and 2.
81+108√201+54⋅20122+4⋅3√2013+√20144096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.4.6.4
Cancel the common factor of 2.
Step 13.1.2.2.4.6.4.1
Cancel the common factor.
81+108√201+54⋅20122+4⋅3√2013+√20144096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.4.6.4.2
Rewrite the expression.
81+108√201+54⋅2011+4⋅3√2013+√20144096-(3+√2018)3-6(3+√2018)2
81+108√201+54⋅2011+4⋅3√2013+√20144096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.4.6.5
Evaluate the exponent.
81+108√201+54⋅201+4⋅3√2013+√20144096-(3+√2018)3-6(3+√2018)2
81+108√201+54⋅201+4⋅3√2013+√20144096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.4.7
Multiply 54 by 201.
81+108√201+10854+4⋅3√2013+√20144096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.4.8
Multiply 4 by 3.
81+108√201+10854+12√2013+√20144096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.4.9
Rewrite √2013 as √2013.
81+108√201+10854+12√2013+√20144096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.4.10
Raise 201 to the power of 3.
81+108√201+10854+12√8120601+√20144096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.4.11
Rewrite 8120601 as 2012⋅201.
Step 13.1.2.2.4.11.1
Factor 40401 out of 8120601.
81+108√201+10854+12√40401(201)+√20144096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.4.11.2
Rewrite 40401 as 2012.
81+108√201+10854+12√2012⋅201+√20144096-(3+√2018)3-6(3+√2018)2
81+108√201+10854+12√2012⋅201+√20144096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.4.12
Pull terms out from under the radical.
81+108√201+10854+12(201√201)+√20144096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.4.13
Multiply 201 by 12.
81+108√201+10854+2412√201+√20144096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.4.14
Rewrite √2014 as 2012.
Step 13.1.2.2.4.14.1
Use n√ax=axn to rewrite √201 as 20112.
81+108√201+10854+2412√201+(20112)44096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.4.14.2
Apply the power rule and multiply exponents, (am)n=amn.
81+108√201+10854+2412√201+20112⋅44096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.4.14.3
Combine 12 and 4.
81+108√201+10854+2412√201+201424096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.4.14.4
Cancel the common factor of 4 and 2.
Step 13.1.2.2.4.14.4.1
Factor 2 out of 4.
81+108√201+10854+2412√201+2012⋅224096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.4.14.4.2
Cancel the common factors.
Step 13.1.2.2.4.14.4.2.1
Factor 2 out of 2.
81+108√201+10854+2412√201+2012⋅22(1)4096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.4.14.4.2.2
Cancel the common factor.
81+108√201+10854+2412√201+2012⋅22⋅14096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.4.14.4.2.3
Rewrite the expression.
81+108√201+10854+2412√201+201214096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.4.14.4.2.4
Divide 2 by 1.
81+108√201+10854+2412√201+20124096-(3+√2018)3-6(3+√2018)2
81+108√201+10854+2412√201+20124096-(3+√2018)3-6(3+√2018)2
81+108√201+10854+2412√201+20124096-(3+√2018)3-6(3+√2018)2
81+108√201+10854+2412√201+20124096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.4.15
Raise 201 to the power of 2.
81+108√201+10854+2412√201+404014096-(3+√2018)3-6(3+√2018)2
81+108√201+10854+2412√201+404014096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.5
Add 81 and 10854.
10935+108√201+2412√201+404014096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.6
Add 10935 and 40401.
51336+108√201+2412√2014096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.7
Add 108√201 and 2412√201.
51336+2520√2014096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.8
Cancel the common factor of 51336+2520√201 and 4096.
Step 13.1.2.2.8.1
Factor 8 out of 51336.
8(6417)+2520√2014096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.8.2
Factor 8 out of 2520√201.
8(6417)+8(315√201)4096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.8.3
Factor 8 out of 8(6417)+8(315√201).
8(6417+315√201)4096-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.8.4
Cancel the common factors.
Step 13.1.2.2.8.4.1
Factor 8 out of 4096.
8(6417+315√201)8⋅512-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.8.4.2
Cancel the common factor.
8(6417+315√201)8⋅512-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.8.4.3
Rewrite the expression.
6417+315√201512-(3+√2018)3-6(3+√2018)2
6417+315√201512-(3+√2018)3-6(3+√2018)2
6417+315√201512-(3+√2018)3-6(3+√2018)2
Step 13.1.2.2.9
Apply the product rule to 3+√2018.
6417+315√201512-(3+√201)383-6(3+√2018)2
Step 13.1.2.2.10
Raise 8 to the power of 3.
6417+315√201512-(3+√201)3512-6(3+√2018)2
Step 13.1.2.2.11
Use the Binomial Theorem.
6417+315√201512-33+3⋅32√201+3⋅3√2012+√2013512-6(3+√2018)2
Step 13.1.2.2.12
Simplify each term.
Step 13.1.2.2.12.1
Raise 3 to the power of 3.
6417+315√201512-27+3⋅32√201+3⋅3√2012+√2013512-6(3+√2018)2
Step 13.1.2.2.12.2
Multiply 3 by 32 by adding the exponents.
Step 13.1.2.2.12.2.1
Multiply 3 by 32.
Step 13.1.2.2.12.2.1.1
Raise 3 to the power of 1.
6417+315√201512-27+31⋅32√201+3⋅3√2012+√2013512-6(3+√2018)2
Step 13.1.2.2.12.2.1.2
Use the power rule aman=am+n to combine exponents.
6417+315√201512-27+31+2√201+3⋅3√2012+√2013512-6(3+√2018)2
6417+315√201512-27+31+2√201+3⋅3√2012+√2013512-6(3+√2018)2
Step 13.1.2.2.12.2.2
Add 1 and 2.
6417+315√201512-27+33√201+3⋅3√2012+√2013512-6(3+√2018)2
6417+315√201512-27+33√201+3⋅3√2012+√2013512-6(3+√2018)2
Step 13.1.2.2.12.3
Raise 3 to the power of 3.
6417+315√201512-27+27√201+3⋅3√2012+√2013512-6(3+√2018)2
Step 13.1.2.2.12.4
Multiply 3 by 3.
6417+315√201512-27+27√201+9√2012+√2013512-6(3+√2018)2
Step 13.1.2.2.12.5
Rewrite √2012 as 201.
Step 13.1.2.2.12.5.1
Use n√ax=axn to rewrite √201 as 20112.
6417+315√201512-27+27√201+9(20112)2+√2013512-6(3+√2018)2
Step 13.1.2.2.12.5.2
Apply the power rule and multiply exponents, (am)n=amn.
6417+315√201512-27+27√201+9⋅20112⋅2+√2013512-6(3+√2018)2
Step 13.1.2.2.12.5.3
Combine 12 and 2.
6417+315√201512-27+27√201+9⋅20122+√2013512-6(3+√2018)2
Step 13.1.2.2.12.5.4
Cancel the common factor of 2.
Step 13.1.2.2.12.5.4.1
Cancel the common factor.
6417+315√201512-27+27√201+9⋅20122+√2013512-6(3+√2018)2
Step 13.1.2.2.12.5.4.2
Rewrite the expression.
6417+315√201512-27+27√201+9⋅2011+√2013512-6(3+√2018)2
6417+315√201512-27+27√201+9⋅2011+√2013512-6(3+√2018)2
Step 13.1.2.2.12.5.5
Evaluate the exponent.
6417+315√201512-27+27√201+9⋅201+√2013512-6(3+√2018)2
6417+315√201512-27+27√201+9⋅201+√2013512-6(3+√2018)2
Step 13.1.2.2.12.6
Multiply 9 by 201.
6417+315√201512-27+27√201+1809+√2013512-6(3+√2018)2
Step 13.1.2.2.12.7
Rewrite √2013 as √2013.
6417+315√201512-27+27√201+1809+√2013512-6(3+√2018)2
Step 13.1.2.2.12.8
Raise 201 to the power of 3.
6417+315√201512-27+27√201+1809+√8120601512-6(3+√2018)2
Step 13.1.2.2.12.9
Rewrite 8120601 as 2012⋅201.
Step 13.1.2.2.12.9.1
Factor 40401 out of 8120601.
6417+315√201512-27+27√201+1809+√40401(201)512-6(3+√2018)2
Step 13.1.2.2.12.9.2
Rewrite 40401 as 2012.
6417+315√201512-27+27√201+1809+√2012⋅201512-6(3+√2018)2
6417+315√201512-27+27√201+1809+√2012⋅201512-6(3+√2018)2
Step 13.1.2.2.12.10
Pull terms out from under the radical.
6417+315√201512-27+27√201+1809+201√201512-6(3+√2018)2
6417+315√201512-27+27√201+1809+201√201512-6(3+√2018)2
Step 13.1.2.2.13
Add 27 and 1809.
6417+315√201512-1836+27√201+201√201512-6(3+√2018)2
Step 13.1.2.2.14
Add 27√201 and 201√201.
6417+315√201512-1836+228√201512-6(3+√2018)2
Step 13.1.2.2.15
Cancel the common factor of 1836+228√201 and 512.
Step 13.1.2.2.15.1
Factor 4 out of 1836.
6417+315√201512-4(459)+228√201512-6(3+√2018)2
Step 13.1.2.2.15.2
Factor 4 out of 228√201.
6417+315√201512-4(459)+4(57√201)512-6(3+√2018)2
Step 13.1.2.2.15.3
Factor 4 out of 4(459)+4(57√201).
6417+315√201512-4(459+57√201)512-6(3+√2018)2
Step 13.1.2.2.15.4
Cancel the common factors.
Step 13.1.2.2.15.4.1
Factor 4 out of 512.
6417+315√201512-4(459+57√201)4⋅128-6(3+√2018)2
Step 13.1.2.2.15.4.2
Cancel the common factor.
6417+315√201512-4(459+57√201)4⋅128-6(3+√2018)2
Step 13.1.2.2.15.4.3
Rewrite the expression.
6417+315√201512-459+57√201128-6(3+√2018)2
6417+315√201512-459+57√201128-6(3+√2018)2
6417+315√201512-459+57√201128-6(3+√2018)2
Step 13.1.2.2.16
Apply the product rule to 3+√2018.
6417+315√201512-459+57√201128-6(3+√201)282
Step 13.1.2.2.17
Raise 8 to the power of 2.
6417+315√201512-459+57√201128-6(3+√201)264
Step 13.1.2.2.18
Cancel the common factor of 2.
Step 13.1.2.2.18.1
Factor 2 out of -6.
6417+315√201512-459+57√201128+2(-3)(3+√201)264
Step 13.1.2.2.18.2
Factor 2 out of 64.
6417+315√201512-459+57√201128+2⋅-3(3+√201)22⋅32
Step 13.1.2.2.18.3
Cancel the common factor.
6417+315√201512-459+57√201128+2⋅-3(3+√201)22⋅32
Step 13.1.2.2.18.4
Rewrite the expression.
6417+315√201512-459+57√201128-3(3+√201)232
6417+315√201512-459+57√201128-3(3+√201)232
Step 13.1.2.2.19
Combine -3 and (3+√201)232.
6417+315√201512-459+57√201128+-3(3+√201)232
Step 13.1.2.2.20
Rewrite (3+√201)2 as (3+√201)(3+√201).
6417+315√201512-459+57√201128+-3((3+√201)(3+√201))32
Step 13.1.2.2.21
Expand (3+√201)(3+√201) using the FOIL Method.
Step 13.1.2.2.21.1
Apply the distributive property.
6417+315√201512-459+57√201128+-3(3(3+√201)+√201(3+√201))32
Step 13.1.2.2.21.2
Apply the distributive property.
6417+315√201512-459+57√201128+-3(3⋅3+3√201+√201(3+√201))32
Step 13.1.2.2.21.3
Apply the distributive property.
6417+315√201512-459+57√201128+-3(3⋅3+3√201+√201⋅3+√201√201)32
6417+315√201512-459+57√201128+-3(3⋅3+3√201+√201⋅3+√201√201)32
Step 13.1.2.2.22
Simplify and combine like terms.
Step 13.1.2.2.22.1
Simplify each term.
Step 13.1.2.2.22.1.1
Multiply 3 by 3.
6417+315√201512-459+57√201128+-3(9+3√201+√201⋅3+√201√201)32
Step 13.1.2.2.22.1.2
Move 3 to the left of √201.
6417+315√201512-459+57√201128+-3(9+3√201+3⋅√201+√201√201)32
Step 13.1.2.2.22.1.3
Combine using the product rule for radicals.
6417+315√201512-459+57√201128+-3(9+3√201+3√201+√201⋅201)32
Step 13.1.2.2.22.1.4
Multiply 201 by 201.
6417+315√201512-459+57√201128+-3(9+3√201+3√201+√40401)32
Step 13.1.2.2.22.1.5
Rewrite 40401 as 2012.
6417+315√201512-459+57√201128+-3(9+3√201+3√201+√2012)32
Step 13.1.2.2.22.1.6
Pull terms out from under the radical, assuming positive real numbers.
6417+315√201512-459+57√201128+-3(9+3√201+3√201+201)32
6417+315√201512-459+57√201128+-3(9+3√201+3√201+201)32
Step 13.1.2.2.22.2
Add 9 and 201.
6417+315√201512-459+57√201128+-3(210+3√201+3√201)32
Step 13.1.2.2.22.3
Add 3√201 and 3√201.
6417+315√201512-459+57√201128+-3(210+6√201)32
6417+315√201512-459+57√201128+-3(210+6√201)32
Step 13.1.2.2.23
Cancel the common factor of 210+6√201 and 32.
Step 13.1.2.2.23.1
Factor 2 out of -3(210+6√201).
6417+315√201512-459+57√201128+2(-3(105+3√201))32
Step 13.1.2.2.23.2
Cancel the common factors.
Step 13.1.2.2.23.2.1
Factor 2 out of 32.
6417+315√201512-459+57√201128+2(-3(105+3√201))2(16)
Step 13.1.2.2.23.2.2
Cancel the common factor.
6417+315√201512-459+57√201128+2(-3(105+3√201))2⋅16
Step 13.1.2.2.23.2.3
Rewrite the expression.
6417+315√201512-459+57√201128+-3(105+3√201)16
6417+315√201512-459+57√201128+-3(105+3√201)16
6417+315√201512-459+57√201128+-3(105+3√201)16
Step 13.1.2.2.24
Move the negative in front of the fraction.
6417+315√201512-459+57√201128-3(105+3√201)16
6417+315√201512-459+57√201128-3(105+3√201)16
Step 13.1.2.3
Find the common denominator.
Step 13.1.2.3.1
Multiply 459+57√201128 by 44.
6417+315√201512-(459+57√201128⋅44)-3(105+3√201)16
Step 13.1.2.3.2
Multiply 459+57√201128 by 44.
6417+315√201512-(459+57√201)⋅4128⋅4-3(105+3√201)16
Step 13.1.2.3.3
Multiply 3(105+3√201)16 by 3232.
6417+315√201512-(459+57√201)⋅4128⋅4-(3(105+3√201)16⋅3232)
Step 13.1.2.3.4
Multiply 3(105+3√201)16 by 3232.
6417+315√201512-(459+57√201)⋅4128⋅4-3(105+3√201)⋅3216⋅32
Step 13.1.2.3.5
Reorder the factors of 128⋅4.
6417+315√201512-(459+57√201)⋅44⋅128-3(105+3√201)⋅3216⋅32
Step 13.1.2.3.6
Multiply 4 by 128.
6417+315√201512-(459+57√201)⋅4512-3(105+3√201)⋅3216⋅32
Step 13.1.2.3.7
Multiply 16 by 32.
6417+315√201512-(459+57√201)⋅4512-3(105+3√201)⋅32512
6417+315√201512-(459+57√201)⋅4512-3(105+3√201)⋅32512
Step 13.1.2.4
Combine the numerators over the common denominator.
6417+315√201-(459+57√201)⋅4-3(105+3√201)⋅32512
Step 13.1.2.5
Simplify each term.
Step 13.1.2.5.1
Apply the distributive property.
6417+315√201+(-1⋅459-(57√201))⋅4-3(105+3√201)⋅32512
Step 13.1.2.5.2
Multiply -1 by 459.
6417+315√201+(-459-(57√201))⋅4-3(105+3√201)⋅32512
Step 13.1.2.5.3
Multiply 57 by -1.
6417+315√201+(-459-57√201)⋅4-3(105+3√201)⋅32512
Step 13.1.2.5.4
Apply the distributive property.
6417+315√201-459⋅4-57√201⋅4-3(105+3√201)⋅32512
Step 13.1.2.5.5
Multiply -459 by 4.
6417+315√201-1836-57√201⋅4-3(105+3√201)⋅32512
Step 13.1.2.5.6
Multiply 4 by -57.
6417+315√201-1836-228√201-3(105+3√201)⋅32512
Step 13.1.2.5.7
Apply the distributive property.
6417+315√201-1836-228√201+(-3⋅105-3(3√201))⋅32512
Step 13.1.2.5.8
Multiply -3 by 105.
6417+315√201-1836-228√201+(-315-3(3√201))⋅32512
Step 13.1.2.5.9
Multiply 3 by -3.
6417+315√201-1836-228√201+(-315-9√201)⋅32512
Step 13.1.2.5.10
Apply the distributive property.
6417+315√201-1836-228√201-315⋅32-9√201⋅32512
Step 13.1.2.5.11
Multiply -315 by 32.
6417+315√201-1836-228√201-10080-9√201⋅32512
Step 13.1.2.5.12
Multiply 32 by -9.
6417+315√201-1836-228√201-10080-288√201512
6417+315√201-1836-228√201-10080-288√201512
Step 13.1.2.6
Simplify terms.
Step 13.1.2.6.1
Subtract 1836 from 6417.
4581+315√201-228√201-10080-288√201512
Step 13.1.2.6.2
Subtract 10080 from 4581.
-5499+315√201-228√201-288√201512
Step 13.1.2.6.3
Subtract 228√201 from 315√201.
-5499+87√201-288√201512
Step 13.1.2.6.4
Subtract 288√201 from 87√201.
-5499-201√201512
Step 13.1.2.6.5
Rewrite -5499 as -1(5499).
-1(5499)-201√201512
Step 13.1.2.6.6
Factor -1 out of -201√201.
-1(5499)-(201√201)512
Step 13.1.2.6.7
Factor -1 out of -1(5499)-(201√201).
-1(5499+201√201)512
Step 13.1.2.6.8
Move the negative in front of the fraction.
-5499+201√201512
-5499+201√201512
-5499+201√201512
-5499+201√201512
Step 13.2
Write the x and y coordinates in point form.
(3+√2018,-5499+201√201512)
(3+√2018,-5499+201√201512)
Step 14
These are the turning points.
(3-√2018,-5499-201√201512)
(0,0)
(3+√2018,-5499+201√201512)
Step 15