Calculus Examples

h(x)=x4-x3-6x2
Step 1
Find the first derivative.
Tap for more steps...
Step 1.1
Differentiate.
Tap for more steps...
Step 1.1.1
By the Sum Rule, the derivative of x4-x3-6x2 with respect to x is ddx[x4]+ddx[-x3]+ddx[-6x2].
ddx[x4]+ddx[-x3]+ddx[-6x2]
Step 1.1.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=4.
4x3+ddx[-x3]+ddx[-6x2]
4x3+ddx[-x3]+ddx[-6x2]
Step 1.2
Evaluate ddx[-x3].
Tap for more steps...
Step 1.2.1
Since -1 is constant with respect to x, the derivative of -x3 with respect to x is -ddx[x3].
4x3-ddx[x3]+ddx[-6x2]
Step 1.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=3.
4x3-(3x2)+ddx[-6x2]
Step 1.2.3
Multiply 3 by -1.
4x3-3x2+ddx[-6x2]
4x3-3x2+ddx[-6x2]
Step 1.3
Evaluate ddx[-6x2].
Tap for more steps...
Step 1.3.1
Since -6 is constant with respect to x, the derivative of -6x2 with respect to x is -6ddx[x2].
4x3-3x2-6ddx[x2]
Step 1.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
4x3-3x2-6(2x)
Step 1.3.3
Multiply 2 by -6.
4x3-3x2-12x
4x3-3x2-12x
4x3-3x2-12x
Step 2
Set the first derivative equal to 0 and solve for x.
Tap for more steps...
Step 2.1
Factor x out of 4x3-3x2-12x.
Tap for more steps...
Step 2.1.1
Factor x out of 4x3.
x(4x2)-3x2-12x=0
Step 2.1.2
Factor x out of -3x2.
x(4x2)+x(-3x)-12x=0
Step 2.1.3
Factor x out of -12x.
x(4x2)+x(-3x)+x-12=0
Step 2.1.4
Factor x out of x(4x2)+x(-3x).
x(4x2-3x)+x-12=0
Step 2.1.5
Factor x out of x(4x2-3x)+x-12.
x(4x2-3x-12)=0
x(4x2-3x-12)=0
Step 2.2
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
x=0
4x2-3x-12=0
Step 2.3
Set x equal to 0.
x=0
Step 2.4
Set 4x2-3x-12 equal to 0 and solve for x.
Tap for more steps...
Step 2.4.1
Set 4x2-3x-12 equal to 0.
4x2-3x-12=0
Step 2.4.2
Solve 4x2-3x-12=0 for x.
Tap for more steps...
Step 2.4.2.1
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 2.4.2.2
Substitute the values a=4, b=-3, and c=-12 into the quadratic formula and solve for x.
3±(-3)2-4(4-12)24
Step 2.4.2.3
Simplify.
Tap for more steps...
Step 2.4.2.3.1
Simplify the numerator.
Tap for more steps...
Step 2.4.2.3.1.1
Raise -3 to the power of 2.
x=3±9-44-1224
Step 2.4.2.3.1.2
Multiply -44-12.
Tap for more steps...
Step 2.4.2.3.1.2.1
Multiply -4 by 4.
x=3±9-16-1224
Step 2.4.2.3.1.2.2
Multiply -16 by -12.
x=3±9+19224
x=3±9+19224
Step 2.4.2.3.1.3
Add 9 and 192.
x=3±20124
x=3±20124
Step 2.4.2.3.2
Multiply 2 by 4.
x=3±2018
x=3±2018
Step 2.4.2.4
Simplify the expression to solve for the + portion of the ±.
Tap for more steps...
Step 2.4.2.4.1
Simplify the numerator.
Tap for more steps...
Step 2.4.2.4.1.1
Raise -3 to the power of 2.
x=3±9-44-1224
Step 2.4.2.4.1.2
Multiply -44-12.
Tap for more steps...
Step 2.4.2.4.1.2.1
Multiply -4 by 4.
x=3±9-16-1224
Step 2.4.2.4.1.2.2
Multiply -16 by -12.
x=3±9+19224
x=3±9+19224
Step 2.4.2.4.1.3
Add 9 and 192.
x=3±20124
x=3±20124
Step 2.4.2.4.2
Multiply 2 by 4.
x=3±2018
Step 2.4.2.4.3
Change the ± to +.
x=3+2018
x=3+2018
Step 2.4.2.5
Simplify the expression to solve for the - portion of the ±.
Tap for more steps...
Step 2.4.2.5.1
Simplify the numerator.
Tap for more steps...
Step 2.4.2.5.1.1
Raise -3 to the power of 2.
x=3±9-44-1224
Step 2.4.2.5.1.2
Multiply -44-12.
Tap for more steps...
Step 2.4.2.5.1.2.1
Multiply -4 by 4.
x=3±9-16-1224
Step 2.4.2.5.1.2.2
Multiply -16 by -12.
x=3±9+19224
x=3±9+19224
Step 2.4.2.5.1.3
Add 9 and 192.
x=3±20124
x=3±20124
Step 2.4.2.5.2
Multiply 2 by 4.
x=3±2018
Step 2.4.2.5.3
Change the ± to -.
x=3-2018
x=3-2018
Step 2.4.2.6
The final answer is the combination of both solutions.
x=3+2018,3-2018
x=3+2018,3-2018
x=3+2018,3-2018
Step 2.5
The final solution is all the values that make x(4x2-3x-12)=0 true.
x=0,3+2018,3-2018
x=0,3+2018,3-2018
Step 3
Split (-,) into separate intervals around the x values that make the first derivative 0 or undefined.
(-,3-2018)(3-2018,0)(0,3+2018)(3+2018,)
Step 4
Substitute any number, such as -4, from the interval (-,3-2018) in the first derivative 4x3-3x2-12x to check if the result is negative or positive.
Tap for more steps...
Step 4.1
Replace the variable x with -4 in the expression.
h(-4)=4(-4)3-3(-4)2-12-4
Step 4.2
Simplify the result.
Tap for more steps...
Step 4.2.1
Simplify each term.
Tap for more steps...
Step 4.2.1.1
Raise -4 to the power of 3.
h(-4)=4-64-3(-4)2-12-4
Step 4.2.1.2
Multiply 4 by -64.
h(-4)=-256-3(-4)2-12-4
Step 4.2.1.3
Raise -4 to the power of 2.
h(-4)=-256-316-12-4
Step 4.2.1.4
Multiply -3 by 16.
h(-4)=-256-48-12-4
Step 4.2.1.5
Multiply -12 by -4.
h(-4)=-256-48+48
h(-4)=-256-48+48
Step 4.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 4.2.2.1
Subtract 48 from -256.
h(-4)=-304+48
Step 4.2.2.2
Add -304 and 48.
h(-4)=-256
h(-4)=-256
Step 4.2.3
The final answer is -256.
-256
-256
-256
Step 5
Substitute any number, such as -1, from the interval (3-2018,0) in the first derivative 4x3-3x2-12x to check if the result is negative or positive.
Tap for more steps...
Step 5.1
Replace the variable x with -1 in the expression.
h(-1)=4(-1)3-3(-1)2-12-1
Step 5.2
Simplify the result.
Tap for more steps...
Step 5.2.1
Simplify each term.
Tap for more steps...
Step 5.2.1.1
Raise -1 to the power of 3.
h(-1)=4-1-3(-1)2-12-1
Step 5.2.1.2
Multiply 4 by -1.
h(-1)=-4-3(-1)2-12-1
Step 5.2.1.3
Raise -1 to the power of 2.
h(-1)=-4-31-12-1
Step 5.2.1.4
Multiply -3 by 1.
h(-1)=-4-3-12-1
Step 5.2.1.5
Multiply -12 by -1.
h(-1)=-4-3+12
h(-1)=-4-3+12
Step 5.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 5.2.2.1
Subtract 3 from -4.
h(-1)=-7+12
Step 5.2.2.2
Add -7 and 12.
h(-1)=5
h(-1)=5
Step 5.2.3
The final answer is 5.
5
5
5
Step 6
Substitute any number, such as 1, from the interval (0,3+2018) in the first derivative 4x3-3x2-12x to check if the result is negative or positive.
Tap for more steps...
Step 6.1
Replace the variable x with 1 in the expression.
h(1)=4(1)3-3(1)2-121
Step 6.2
Simplify the result.
Tap for more steps...
Step 6.2.1
Simplify each term.
Tap for more steps...
Step 6.2.1.1
One to any power is one.
h(1)=41-3(1)2-121
Step 6.2.1.2
Multiply 4 by 1.
h(1)=4-3(1)2-121
Step 6.2.1.3
One to any power is one.
h(1)=4-31-121
Step 6.2.1.4
Multiply -3 by 1.
h(1)=4-3-121
Step 6.2.1.5
Multiply -12 by 1.
h(1)=4-3-12
h(1)=4-3-12
Step 6.2.2
Simplify by subtracting numbers.
Tap for more steps...
Step 6.2.2.1
Subtract 3 from 4.
h(1)=1-12
Step 6.2.2.2
Subtract 12 from 1.
h(1)=-11
h(1)=-11
Step 6.2.3
The final answer is -11.
-11
-11
-11
Step 7
Substitute any number, such as 5, from the interval (3+2018,) in the first derivative 4x3-3x2-12x to check if the result is negative or positive.
Tap for more steps...
Step 7.1
Replace the variable x with 5 in the expression.
h(5)=4(5)3-3(5)2-125
Step 7.2
Simplify the result.
Tap for more steps...
Step 7.2.1
Simplify each term.
Tap for more steps...
Step 7.2.1.1
Raise 5 to the power of 3.
h(5)=4125-3(5)2-125
Step 7.2.1.2
Multiply 4 by 125.
h(5)=500-3(5)2-125
Step 7.2.1.3
Raise 5 to the power of 2.
h(5)=500-325-125
Step 7.2.1.4
Multiply -3 by 25.
h(5)=500-75-125
Step 7.2.1.5
Multiply -12 by 5.
h(5)=500-75-60
h(5)=500-75-60
Step 7.2.2
Simplify by subtracting numbers.
Tap for more steps...
Step 7.2.2.1
Subtract 75 from 500.
h(5)=425-60
Step 7.2.2.2
Subtract 60 from 425.
h(5)=365
h(5)=365
Step 7.2.3
The final answer is 365.
365
365
365
Step 8
Since the first derivative changed signs from negative to positive around x=3-2018, then there is a turning point at x=3-2018.
Step 9
Find the y-coordinate of 3-2018 to find the turning point.
Tap for more steps...
Step 9.1
Find h(3-2018) to find the y-coordinate of 3-2018.
Tap for more steps...
Step 9.1.1
Replace the variable x with 3-2018 in the expression.
h(3-2018)=(3-2018)4-(3-2018)3-6(3-2018)2
Step 9.1.2
Simplify (3-2018)4-(3-2018)3-6(3-2018)2.
Tap for more steps...
Step 9.1.2.1
Remove parentheses.
(3-2018)4-(3-2018)3-6(3-2018)2
Step 9.1.2.2
Simplify each term.
Tap for more steps...
Step 9.1.2.2.1
Apply the product rule to 3-2018.
(3-201)484-(3-2018)3-6(3-2018)2
Step 9.1.2.2.2
Raise 8 to the power of 4.
(3-201)44096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.3
Use the Binomial Theorem.
34+433(-201)+632(-201)2+43(-201)3+(-201)44096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4
Simplify each term.
Tap for more steps...
Step 9.1.2.2.4.1
Raise 3 to the power of 4.
81+433(-201)+632(-201)2+43(-201)3+(-201)44096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.2
Raise 3 to the power of 3.
81+427(-201)+632(-201)2+43(-201)3+(-201)44096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.3
Multiply 4 by 27.
81+108(-201)+632(-201)2+43(-201)3+(-201)44096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.4
Multiply -1 by 108.
81-108201+632(-201)2+43(-201)3+(-201)44096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.5
Raise 3 to the power of 2.
81-108201+69(-201)2+43(-201)3+(-201)44096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.6
Multiply 6 by 9.
81-108201+54(-201)2+43(-201)3+(-201)44096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.7
Apply the product rule to -201.
81-108201+54((-1)22012)+43(-201)3+(-201)44096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.8
Raise -1 to the power of 2.
81-108201+54(12012)+43(-201)3+(-201)44096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.9
Multiply 2012 by 1.
81-108201+542012+43(-201)3+(-201)44096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.10
Rewrite 2012 as 201.
Tap for more steps...
Step 9.1.2.2.4.10.1
Use nax=axn to rewrite 201 as 20112.
81-108201+54(20112)2+43(-201)3+(-201)44096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.10.2
Apply the power rule and multiply exponents, (am)n=amn.
81-108201+54201122+43(-201)3+(-201)44096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.10.3
Combine 12 and 2.
81-108201+5420122+43(-201)3+(-201)44096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.10.4
Cancel the common factor of 2.
Tap for more steps...
Step 9.1.2.2.4.10.4.1
Cancel the common factor.
81-108201+5420122+43(-201)3+(-201)44096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.10.4.2
Rewrite the expression.
81-108201+542011+43(-201)3+(-201)44096-(3-2018)3-6(3-2018)2
81-108201+542011+43(-201)3+(-201)44096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.10.5
Evaluate the exponent.
81-108201+54201+43(-201)3+(-201)44096-(3-2018)3-6(3-2018)2
81-108201+54201+43(-201)3+(-201)44096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.11
Multiply 54 by 201.
81-108201+10854+43(-201)3+(-201)44096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.12
Multiply 4 by 3.
81-108201+10854+12(-201)3+(-201)44096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.13
Apply the product rule to -201.
81-108201+10854+12((-1)32013)+(-201)44096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.14
Raise -1 to the power of 3.
81-108201+10854+12(-2013)+(-201)44096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.15
Rewrite 2013 as 2013.
81-108201+10854+12(-2013)+(-201)44096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.16
Raise 201 to the power of 3.
81-108201+10854+12(-8120601)+(-201)44096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.17
Rewrite 8120601 as 2012201.
Tap for more steps...
Step 9.1.2.2.4.17.1
Factor 40401 out of 8120601.
81-108201+10854+12(-40401(201))+(-201)44096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.17.2
Rewrite 40401 as 2012.
81-108201+10854+12(-2012201)+(-201)44096-(3-2018)3-6(3-2018)2
81-108201+10854+12(-2012201)+(-201)44096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.18
Pull terms out from under the radical.
81-108201+10854+12(-(201201))+(-201)44096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.19
Multiply 201 by -1.
81-108201+10854+12(-201201)+(-201)44096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.20
Multiply -201 by 12.
81-108201+10854-2412201+(-201)44096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.21
Apply the product rule to -201.
81-108201+10854-2412201+(-1)420144096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.22
Raise -1 to the power of 4.
81-108201+10854-2412201+120144096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.23
Multiply 2014 by 1.
81-108201+10854-2412201+20144096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.24
Rewrite 2014 as 2012.
Tap for more steps...
Step 9.1.2.2.4.24.1
Use nax=axn to rewrite 201 as 20112.
81-108201+10854-2412201+(20112)44096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.24.2
Apply the power rule and multiply exponents, (am)n=amn.
81-108201+10854-2412201+2011244096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.24.3
Combine 12 and 4.
81-108201+10854-2412201+201424096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.24.4
Cancel the common factor of 4 and 2.
Tap for more steps...
Step 9.1.2.2.4.24.4.1
Factor 2 out of 4.
81-108201+10854-2412201+2012224096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.24.4.2
Cancel the common factors.
Tap for more steps...
Step 9.1.2.2.4.24.4.2.1
Factor 2 out of 2.
81-108201+10854-2412201+201222(1)4096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.24.4.2.2
Cancel the common factor.
81-108201+10854-2412201+20122214096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.24.4.2.3
Rewrite the expression.
81-108201+10854-2412201+201214096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.24.4.2.4
Divide 2 by 1.
81-108201+10854-2412201+20124096-(3-2018)3-6(3-2018)2
81-108201+10854-2412201+20124096-(3-2018)3-6(3-2018)2
81-108201+10854-2412201+20124096-(3-2018)3-6(3-2018)2
81-108201+10854-2412201+20124096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.4.25
Raise 201 to the power of 2.
81-108201+10854-2412201+404014096-(3-2018)3-6(3-2018)2
81-108201+10854-2412201+404014096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.5
Add 81 and 10854.
10935-108201-2412201+404014096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.6
Add 10935 and 40401.
51336-108201-24122014096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.7
Subtract 2412201 from -108201.
51336-25202014096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.8
Cancel the common factor of 51336-2520201 and 4096.
Tap for more steps...
Step 9.1.2.2.8.1
Factor 8 out of 51336.
8(6417)-25202014096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.8.2
Factor 8 out of -2520201.
8(6417)+8(-315201)4096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.8.3
Factor 8 out of 8(6417)+8(-315201).
8(6417-315201)4096-(3-2018)3-6(3-2018)2
Step 9.1.2.2.8.4
Cancel the common factors.
Tap for more steps...
Step 9.1.2.2.8.4.1
Factor 8 out of 4096.
8(6417-315201)8512-(3-2018)3-6(3-2018)2
Step 9.1.2.2.8.4.2
Cancel the common factor.
8(6417-315201)8512-(3-2018)3-6(3-2018)2
Step 9.1.2.2.8.4.3
Rewrite the expression.
6417-315201512-(3-2018)3-6(3-2018)2
6417-315201512-(3-2018)3-6(3-2018)2
6417-315201512-(3-2018)3-6(3-2018)2
Step 9.1.2.2.9
Apply the product rule to 3-2018.
6417-315201512-(3-201)383-6(3-2018)2
Step 9.1.2.2.10
Raise 8 to the power of 3.
6417-315201512-(3-201)3512-6(3-2018)2
Step 9.1.2.2.11
Use the Binomial Theorem.
6417-315201512-33+332(-201)+33(-201)2+(-201)3512-6(3-2018)2
Step 9.1.2.2.12
Simplify each term.
Tap for more steps...
Step 9.1.2.2.12.1
Raise 3 to the power of 3.
6417-315201512-27+332(-201)+33(-201)2+(-201)3512-6(3-2018)2
Step 9.1.2.2.12.2
Multiply 3 by 32 by adding the exponents.
Tap for more steps...
Step 9.1.2.2.12.2.1
Multiply 3 by 32.
Tap for more steps...
Step 9.1.2.2.12.2.1.1
Raise 3 to the power of 1.
6417-315201512-27+3132(-201)+33(-201)2+(-201)3512-6(3-2018)2
Step 9.1.2.2.12.2.1.2
Use the power rule aman=am+n to combine exponents.
6417-315201512-27+31+2(-201)+33(-201)2+(-201)3512-6(3-2018)2
6417-315201512-27+31+2(-201)+33(-201)2+(-201)3512-6(3-2018)2
Step 9.1.2.2.12.2.2
Add 1 and 2.
6417-315201512-27+33(-201)+33(-201)2+(-201)3512-6(3-2018)2
6417-315201512-27+33(-201)+33(-201)2+(-201)3512-6(3-2018)2
Step 9.1.2.2.12.3
Raise 3 to the power of 3.
6417-315201512-27+27(-201)+33(-201)2+(-201)3512-6(3-2018)2
Step 9.1.2.2.12.4
Multiply -1 by 27.
6417-315201512-27-27201+33(-201)2+(-201)3512-6(3-2018)2
Step 9.1.2.2.12.5
Multiply 3 by 3.
6417-315201512-27-27201+9(-201)2+(-201)3512-6(3-2018)2
Step 9.1.2.2.12.6
Apply the product rule to -201.
6417-315201512-27-27201+9((-1)22012)+(-201)3512-6(3-2018)2
Step 9.1.2.2.12.7
Raise -1 to the power of 2.
6417-315201512-27-27201+9(12012)+(-201)3512-6(3-2018)2
Step 9.1.2.2.12.8
Multiply 2012 by 1.
6417-315201512-27-27201+92012+(-201)3512-6(3-2018)2
Step 9.1.2.2.12.9
Rewrite 2012 as 201.
Tap for more steps...
Step 9.1.2.2.12.9.1
Use nax=axn to rewrite 201 as 20112.
6417-315201512-27-27201+9(20112)2+(-201)3512-6(3-2018)2
Step 9.1.2.2.12.9.2
Apply the power rule and multiply exponents, (am)n=amn.
6417-315201512-27-27201+9201122+(-201)3512-6(3-2018)2
Step 9.1.2.2.12.9.3
Combine 12 and 2.
6417-315201512-27-27201+920122+(-201)3512-6(3-2018)2
Step 9.1.2.2.12.9.4
Cancel the common factor of 2.
Tap for more steps...
Step 9.1.2.2.12.9.4.1
Cancel the common factor.
6417-315201512-27-27201+920122+(-201)3512-6(3-2018)2
Step 9.1.2.2.12.9.4.2
Rewrite the expression.
6417-315201512-27-27201+92011+(-201)3512-6(3-2018)2
6417-315201512-27-27201+92011+(-201)3512-6(3-2018)2
Step 9.1.2.2.12.9.5
Evaluate the exponent.
6417-315201512-27-27201+9201+(-201)3512-6(3-2018)2
6417-315201512-27-27201+9201+(-201)3512-6(3-2018)2
Step 9.1.2.2.12.10
Multiply 9 by 201.
6417-315201512-27-27201+1809+(-201)3512-6(3-2018)2
Step 9.1.2.2.12.11
Apply the product rule to -201.
6417-315201512-27-27201+1809+(-1)32013512-6(3-2018)2
Step 9.1.2.2.12.12
Raise -1 to the power of 3.
6417-315201512-27-27201+1809-2013512-6(3-2018)2
Step 9.1.2.2.12.13
Rewrite 2013 as 2013.
6417-315201512-27-27201+1809-2013512-6(3-2018)2
Step 9.1.2.2.12.14
Raise 201 to the power of 3.
6417-315201512-27-27201+1809-8120601512-6(3-2018)2
Step 9.1.2.2.12.15
Rewrite 8120601 as 2012201.
Tap for more steps...
Step 9.1.2.2.12.15.1
Factor 40401 out of 8120601.
6417-315201512-27-27201+1809-40401(201)512-6(3-2018)2
Step 9.1.2.2.12.15.2
Rewrite 40401 as 2012.
6417-315201512-27-27201+1809-2012201512-6(3-2018)2
6417-315201512-27-27201+1809-2012201512-6(3-2018)2
Step 9.1.2.2.12.16
Pull terms out from under the radical.
6417-315201512-27-27201+1809-(201201)512-6(3-2018)2
Step 9.1.2.2.12.17
Multiply 201 by -1.
6417-315201512-27-27201+1809-201201512-6(3-2018)2
6417-315201512-27-27201+1809-201201512-6(3-2018)2
Step 9.1.2.2.13
Add 27 and 1809.
6417-315201512-1836-27201-201201512-6(3-2018)2
Step 9.1.2.2.14
Subtract 201201 from -27201.
6417-315201512-1836-228201512-6(3-2018)2
Step 9.1.2.2.15
Cancel the common factor of 1836-228201 and 512.
Tap for more steps...
Step 9.1.2.2.15.1
Factor 4 out of 1836.
6417-315201512-4(459)-228201512-6(3-2018)2
Step 9.1.2.2.15.2
Factor 4 out of -228201.
6417-315201512-4(459)+4(-57201)512-6(3-2018)2
Step 9.1.2.2.15.3
Factor 4 out of 4(459)+4(-57201).
6417-315201512-4(459-57201)512-6(3-2018)2
Step 9.1.2.2.15.4
Cancel the common factors.
Tap for more steps...
Step 9.1.2.2.15.4.1
Factor 4 out of 512.
6417-315201512-4(459-57201)4128-6(3-2018)2
Step 9.1.2.2.15.4.2
Cancel the common factor.
6417-315201512-4(459-57201)4128-6(3-2018)2
Step 9.1.2.2.15.4.3
Rewrite the expression.
6417-315201512-459-57201128-6(3-2018)2
6417-315201512-459-57201128-6(3-2018)2
6417-315201512-459-57201128-6(3-2018)2
Step 9.1.2.2.16
Apply the product rule to 3-2018.
6417-315201512-459-57201128-6(3-201)282
Step 9.1.2.2.17
Raise 8 to the power of 2.
6417-315201512-459-57201128-6(3-201)264
Step 9.1.2.2.18
Cancel the common factor of 2.
Tap for more steps...
Step 9.1.2.2.18.1
Factor 2 out of -6.
6417-315201512-459-57201128+2(-3)(3-201)264
Step 9.1.2.2.18.2
Factor 2 out of 64.
6417-315201512-459-57201128+2-3(3-201)2232
Step 9.1.2.2.18.3
Cancel the common factor.
6417-315201512-459-57201128+2-3(3-201)2232
Step 9.1.2.2.18.4
Rewrite the expression.
6417-315201512-459-57201128-3(3-201)232
6417-315201512-459-57201128-3(3-201)232
Step 9.1.2.2.19
Combine -3 and (3-201)232.
6417-315201512-459-57201128+-3(3-201)232
Step 9.1.2.2.20
Rewrite (3-201)2 as (3-201)(3-201).
6417-315201512-459-57201128+-3((3-201)(3-201))32
Step 9.1.2.2.21
Expand (3-201)(3-201) using the FOIL Method.
Tap for more steps...
Step 9.1.2.2.21.1
Apply the distributive property.
6417-315201512-459-57201128+-3(3(3-201)-201(3-201))32
Step 9.1.2.2.21.2
Apply the distributive property.
6417-315201512-459-57201128+-3(33+3(-201)-201(3-201))32
Step 9.1.2.2.21.3
Apply the distributive property.
6417-315201512-459-57201128+-3(33+3(-201)-2013-201(-201))32
6417-315201512-459-57201128+-3(33+3(-201)-2013-201(-201))32
Step 9.1.2.2.22
Simplify and combine like terms.
Tap for more steps...
Step 9.1.2.2.22.1
Simplify each term.
Tap for more steps...
Step 9.1.2.2.22.1.1
Multiply 3 by 3.
6417-315201512-459-57201128+-3(9+3(-201)-2013-201(-201))32
Step 9.1.2.2.22.1.2
Multiply -1 by 3.
6417-315201512-459-57201128+-3(9-3201-2013-201(-201))32
Step 9.1.2.2.22.1.3
Multiply 3 by -1.
6417-315201512-459-57201128+-3(9-3201-3201-201(-201))32
Step 9.1.2.2.22.1.4
Multiply -201(-201).
Tap for more steps...
Step 9.1.2.2.22.1.4.1
Multiply -1 by -1.
6417-315201512-459-57201128+-3(9-3201-3201+1201201)32
Step 9.1.2.2.22.1.4.2
Multiply 201 by 1.
6417-315201512-459-57201128+-3(9-3201-3201+201201)32
Step 9.1.2.2.22.1.4.3
Raise 201 to the power of 1.
6417-315201512-459-57201128+-3(9-3201-3201+2011201)32
Step 9.1.2.2.22.1.4.4
Raise 201 to the power of 1.
6417-315201512-459-57201128+-3(9-3201-3201+20112011)32
Step 9.1.2.2.22.1.4.5
Use the power rule aman=am+n to combine exponents.
6417-315201512-459-57201128+-3(9-3201-3201+2011+1)32
Step 9.1.2.2.22.1.4.6
Add 1 and 1.
6417-315201512-459-57201128+-3(9-3201-3201+2012)32
6417-315201512-459-57201128+-3(9-3201-3201+2012)32
Step 9.1.2.2.22.1.5
Rewrite 2012 as 201.
Tap for more steps...
Step 9.1.2.2.22.1.5.1
Use nax=axn to rewrite 201 as 20112.
6417-315201512-459-57201128+-3(9-3201-3201+(20112)2)32
Step 9.1.2.2.22.1.5.2
Apply the power rule and multiply exponents, (am)n=amn.
6417-315201512-459-57201128+-3(9-3201-3201+201122)32
Step 9.1.2.2.22.1.5.3
Combine 12 and 2.
6417-315201512-459-57201128+-3(9-3201-3201+20122)32
Step 9.1.2.2.22.1.5.4
Cancel the common factor of 2.
Tap for more steps...
Step 9.1.2.2.22.1.5.4.1
Cancel the common factor.
6417-315201512-459-57201128+-3(9-3201-3201+20122)32
Step 9.1.2.2.22.1.5.4.2
Rewrite the expression.
6417-315201512-459-57201128+-3(9-3201-3201+2011)32
6417-315201512-459-57201128+-3(9-3201-3201+2011)32
Step 9.1.2.2.22.1.5.5
Evaluate the exponent.
6417-315201512-459-57201128+-3(9-3201-3201+201)32
6417-315201512-459-57201128+-3(9-3201-3201+201)32
6417-315201512-459-57201128+-3(9-3201-3201+201)32
Step 9.1.2.2.22.2
Add 9 and 201.
6417-315201512-459-57201128+-3(210-3201-3201)32
Step 9.1.2.2.22.3
Subtract 3201 from -3201.
6417-315201512-459-57201128+-3(210-6201)32
6417-315201512-459-57201128+-3(210-6201)32
Step 9.1.2.2.23
Cancel the common factor of 210-6201 and 32.
Tap for more steps...
Step 9.1.2.2.23.1
Factor 2 out of -3(210-6201).
6417-315201512-459-57201128+2(-3(105-3201))32
Step 9.1.2.2.23.2
Cancel the common factors.
Tap for more steps...
Step 9.1.2.2.23.2.1
Factor 2 out of 32.
6417-315201512-459-57201128+2(-3(105-3201))2(16)
Step 9.1.2.2.23.2.2
Cancel the common factor.
6417-315201512-459-57201128+2(-3(105-3201))216
Step 9.1.2.2.23.2.3
Rewrite the expression.
6417-315201512-459-57201128+-3(105-3201)16
6417-315201512-459-57201128+-3(105-3201)16
6417-315201512-459-57201128+-3(105-3201)16
Step 9.1.2.2.24
Move the negative in front of the fraction.
6417-315201512-459-57201128-3(105-3201)16
6417-315201512-459-57201128-3(105-3201)16
Step 9.1.2.3
Find the common denominator.
Tap for more steps...
Step 9.1.2.3.1
Multiply 459-57201128 by 44.
6417-315201512-(459-5720112844)-3(105-3201)16
Step 9.1.2.3.2
Multiply 459-57201128 by 44.
6417-315201512-(459-57201)41284-3(105-3201)16
Step 9.1.2.3.3
Multiply 3(105-3201)16 by 3232.
6417-315201512-(459-57201)41284-(3(105-3201)163232)
Step 9.1.2.3.4
Multiply 3(105-3201)16 by 3232.
6417-315201512-(459-57201)41284-3(105-3201)321632
Step 9.1.2.3.5
Reorder the factors of 1284.
6417-315201512-(459-57201)44128-3(105-3201)321632
Step 9.1.2.3.6
Multiply 4 by 128.
6417-315201512-(459-57201)4512-3(105-3201)321632
Step 9.1.2.3.7
Multiply 16 by 32.
6417-315201512-(459-57201)4512-3(105-3201)32512
6417-315201512-(459-57201)4512-3(105-3201)32512
Step 9.1.2.4
Combine the numerators over the common denominator.
6417-315201-(459-57201)4-3(105-3201)32512
Step 9.1.2.5
Simplify each term.
Tap for more steps...
Step 9.1.2.5.1
Apply the distributive property.
6417-315201+(-1459-(-57201))4-3(105-3201)32512
Step 9.1.2.5.2
Multiply -1 by 459.
6417-315201+(-459-(-57201))4-3(105-3201)32512
Step 9.1.2.5.3
Multiply -57 by -1.
6417-315201+(-459+57201)4-3(105-3201)32512
Step 9.1.2.5.4
Apply the distributive property.
6417-315201-4594+572014-3(105-3201)32512
Step 9.1.2.5.5
Multiply -459 by 4.
6417-315201-1836+572014-3(105-3201)32512
Step 9.1.2.5.6
Multiply 4 by 57.
6417-315201-1836+228201-3(105-3201)32512
Step 9.1.2.5.7
Apply the distributive property.
6417-315201-1836+228201+(-3105-3(-3201))32512
Step 9.1.2.5.8
Multiply -3 by 105.
6417-315201-1836+228201+(-315-3(-3201))32512
Step 9.1.2.5.9
Multiply -3 by -3.
6417-315201-1836+228201+(-315+9201)32512
Step 9.1.2.5.10
Apply the distributive property.
6417-315201-1836+228201-31532+920132512
Step 9.1.2.5.11
Multiply -315 by 32.
6417-315201-1836+228201-10080+920132512
Step 9.1.2.5.12
Multiply 32 by 9.
6417-315201-1836+228201-10080+288201512
6417-315201-1836+228201-10080+288201512
Step 9.1.2.6
Simplify terms.
Tap for more steps...
Step 9.1.2.6.1
Subtract 1836 from 6417.
4581-315201+228201-10080+288201512
Step 9.1.2.6.2
Subtract 10080 from 4581.
-5499-315201+228201+288201512
Step 9.1.2.6.3
Add -315201 and 228201.
-5499-87201+288201512
Step 9.1.2.6.4
Add -87201 and 288201.
-5499+201201512
Step 9.1.2.6.5
Rewrite -5499 as -1(5499).
-1(5499)+201201512
Step 9.1.2.6.6
Factor -1 out of 201201.
-1(5499)-(-201201)512
Step 9.1.2.6.7
Factor -1 out of -1(5499)-(-201201).
-1(5499-201201)512
Step 9.1.2.6.8
Move the negative in front of the fraction.
-5499-201201512
-5499-201201512
-5499-201201512
-5499-201201512
Step 9.2
Write the x and y coordinates in point form.
(3-2018,-5499-201201512)
(3-2018,-5499-201201512)
Step 10
Since the first derivative changed signs from positive to negative around x=0, then there is a turning point at x=0.
Step 11
Find the y-coordinate of 0 to find the turning point.
Tap for more steps...
Step 11.1
Find h(0) to find the y-coordinate of 0.
Tap for more steps...
Step 11.1.1
Replace the variable x with 0 in the expression.
h(0)=(0)4-(0)3-6(0)2
Step 11.1.2
Simplify (0)4-(0)3-6(0)2.
Tap for more steps...
Step 11.1.2.1
Remove parentheses.
(0)4-(0)3-6(0)2
Step 11.1.2.2
Simplify each term.
Tap for more steps...
Step 11.1.2.2.1
Raising 0 to any positive power yields 0.
0-(0)3-6(0)2
Step 11.1.2.2.2
Raising 0 to any positive power yields 0.
0-0-6(0)2
Step 11.1.2.2.3
Multiply -1 by 0.
0+0-6(0)2
Step 11.1.2.2.4
Raising 0 to any positive power yields 0.
0+0-60
Step 11.1.2.2.5
Multiply -6 by 0.
0+0+0
0+0+0
Step 11.1.2.3
Simplify by adding numbers.
Tap for more steps...
Step 11.1.2.3.1
Add 0 and 0.
0+0
Step 11.1.2.3.2
Add 0 and 0.
0
0
0
0
Step 11.2
Write the x and y coordinates in point form.
(0,0)
(0,0)
Step 12
Since the first derivative changed signs from negative to positive around x=3+2018, then there is a turning point at x=3+2018.
Step 13
Find the y-coordinate of 3+2018 to find the turning point.
Tap for more steps...
Step 13.1
Find h(3+2018) to find the y-coordinate of 3+2018.
Tap for more steps...
Step 13.1.1
Replace the variable x with 3+2018 in the expression.
h(3+2018)=(3+2018)4-(3+2018)3-6(3+2018)2
Step 13.1.2
Simplify (3+2018)4-(3+2018)3-6(3+2018)2.
Tap for more steps...
Step 13.1.2.1
Remove parentheses.
(3+2018)4-(3+2018)3-6(3+2018)2
Step 13.1.2.2
Simplify each term.
Tap for more steps...
Step 13.1.2.2.1
Apply the product rule to 3+2018.
(3+201)484-(3+2018)3-6(3+2018)2
Step 13.1.2.2.2
Raise 8 to the power of 4.
(3+201)44096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.3
Use the Binomial Theorem.
34+433201+6322012+432013+20144096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.4
Simplify each term.
Tap for more steps...
Step 13.1.2.2.4.1
Raise 3 to the power of 4.
81+433201+6322012+432013+20144096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.4.2
Raise 3 to the power of 3.
81+427201+6322012+432013+20144096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.4.3
Multiply 4 by 27.
81+108201+6322012+432013+20144096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.4.4
Raise 3 to the power of 2.
81+108201+692012+432013+20144096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.4.5
Multiply 6 by 9.
81+108201+542012+432013+20144096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.4.6
Rewrite 2012 as 201.
Tap for more steps...
Step 13.1.2.2.4.6.1
Use nax=axn to rewrite 201 as 20112.
81+108201+54(20112)2+432013+20144096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.4.6.2
Apply the power rule and multiply exponents, (am)n=amn.
81+108201+54201122+432013+20144096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.4.6.3
Combine 12 and 2.
81+108201+5420122+432013+20144096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.4.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 13.1.2.2.4.6.4.1
Cancel the common factor.
81+108201+5420122+432013+20144096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.4.6.4.2
Rewrite the expression.
81+108201+542011+432013+20144096-(3+2018)3-6(3+2018)2
81+108201+542011+432013+20144096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.4.6.5
Evaluate the exponent.
81+108201+54201+432013+20144096-(3+2018)3-6(3+2018)2
81+108201+54201+432013+20144096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.4.7
Multiply 54 by 201.
81+108201+10854+432013+20144096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.4.8
Multiply 4 by 3.
81+108201+10854+122013+20144096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.4.9
Rewrite 2013 as 2013.
81+108201+10854+122013+20144096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.4.10
Raise 201 to the power of 3.
81+108201+10854+128120601+20144096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.4.11
Rewrite 8120601 as 2012201.
Tap for more steps...
Step 13.1.2.2.4.11.1
Factor 40401 out of 8120601.
81+108201+10854+1240401(201)+20144096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.4.11.2
Rewrite 40401 as 2012.
81+108201+10854+122012201+20144096-(3+2018)3-6(3+2018)2
81+108201+10854+122012201+20144096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.4.12
Pull terms out from under the radical.
81+108201+10854+12(201201)+20144096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.4.13
Multiply 201 by 12.
81+108201+10854+2412201+20144096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.4.14
Rewrite 2014 as 2012.
Tap for more steps...
Step 13.1.2.2.4.14.1
Use nax=axn to rewrite 201 as 20112.
81+108201+10854+2412201+(20112)44096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.4.14.2
Apply the power rule and multiply exponents, (am)n=amn.
81+108201+10854+2412201+2011244096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.4.14.3
Combine 12 and 4.
81+108201+10854+2412201+201424096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.4.14.4
Cancel the common factor of 4 and 2.
Tap for more steps...
Step 13.1.2.2.4.14.4.1
Factor 2 out of 4.
81+108201+10854+2412201+2012224096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.4.14.4.2
Cancel the common factors.
Tap for more steps...
Step 13.1.2.2.4.14.4.2.1
Factor 2 out of 2.
81+108201+10854+2412201+201222(1)4096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.4.14.4.2.2
Cancel the common factor.
81+108201+10854+2412201+20122214096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.4.14.4.2.3
Rewrite the expression.
81+108201+10854+2412201+201214096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.4.14.4.2.4
Divide 2 by 1.
81+108201+10854+2412201+20124096-(3+2018)3-6(3+2018)2
81+108201+10854+2412201+20124096-(3+2018)3-6(3+2018)2
81+108201+10854+2412201+20124096-(3+2018)3-6(3+2018)2
81+108201+10854+2412201+20124096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.4.15
Raise 201 to the power of 2.
81+108201+10854+2412201+404014096-(3+2018)3-6(3+2018)2
81+108201+10854+2412201+404014096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.5
Add 81 and 10854.
10935+108201+2412201+404014096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.6
Add 10935 and 40401.
51336+108201+24122014096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.7
Add 108201 and 2412201.
51336+25202014096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.8
Cancel the common factor of 51336+2520201 and 4096.
Tap for more steps...
Step 13.1.2.2.8.1
Factor 8 out of 51336.
8(6417)+25202014096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.8.2
Factor 8 out of 2520201.
8(6417)+8(315201)4096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.8.3
Factor 8 out of 8(6417)+8(315201).
8(6417+315201)4096-(3+2018)3-6(3+2018)2
Step 13.1.2.2.8.4
Cancel the common factors.
Tap for more steps...
Step 13.1.2.2.8.4.1
Factor 8 out of 4096.
8(6417+315201)8512-(3+2018)3-6(3+2018)2
Step 13.1.2.2.8.4.2
Cancel the common factor.
8(6417+315201)8512-(3+2018)3-6(3+2018)2
Step 13.1.2.2.8.4.3
Rewrite the expression.
6417+315201512-(3+2018)3-6(3+2018)2
6417+315201512-(3+2018)3-6(3+2018)2
6417+315201512-(3+2018)3-6(3+2018)2
Step 13.1.2.2.9
Apply the product rule to 3+2018.
6417+315201512-(3+201)383-6(3+2018)2
Step 13.1.2.2.10
Raise 8 to the power of 3.
6417+315201512-(3+201)3512-6(3+2018)2
Step 13.1.2.2.11
Use the Binomial Theorem.
6417+315201512-33+332201+332012+2013512-6(3+2018)2
Step 13.1.2.2.12
Simplify each term.
Tap for more steps...
Step 13.1.2.2.12.1
Raise 3 to the power of 3.
6417+315201512-27+332201+332012+2013512-6(3+2018)2
Step 13.1.2.2.12.2
Multiply 3 by 32 by adding the exponents.
Tap for more steps...
Step 13.1.2.2.12.2.1
Multiply 3 by 32.
Tap for more steps...
Step 13.1.2.2.12.2.1.1
Raise 3 to the power of 1.
6417+315201512-27+3132201+332012+2013512-6(3+2018)2
Step 13.1.2.2.12.2.1.2
Use the power rule aman=am+n to combine exponents.
6417+315201512-27+31+2201+332012+2013512-6(3+2018)2
6417+315201512-27+31+2201+332012+2013512-6(3+2018)2
Step 13.1.2.2.12.2.2
Add 1 and 2.
6417+315201512-27+33201+332012+2013512-6(3+2018)2
6417+315201512-27+33201+332012+2013512-6(3+2018)2
Step 13.1.2.2.12.3
Raise 3 to the power of 3.
6417+315201512-27+27201+332012+2013512-6(3+2018)2
Step 13.1.2.2.12.4
Multiply 3 by 3.
6417+315201512-27+27201+92012+2013512-6(3+2018)2
Step 13.1.2.2.12.5
Rewrite 2012 as 201.
Tap for more steps...
Step 13.1.2.2.12.5.1
Use nax=axn to rewrite 201 as 20112.
6417+315201512-27+27201+9(20112)2+2013512-6(3+2018)2
Step 13.1.2.2.12.5.2
Apply the power rule and multiply exponents, (am)n=amn.
6417+315201512-27+27201+9201122+2013512-6(3+2018)2
Step 13.1.2.2.12.5.3
Combine 12 and 2.
6417+315201512-27+27201+920122+2013512-6(3+2018)2
Step 13.1.2.2.12.5.4
Cancel the common factor of 2.
Tap for more steps...
Step 13.1.2.2.12.5.4.1
Cancel the common factor.
6417+315201512-27+27201+920122+2013512-6(3+2018)2
Step 13.1.2.2.12.5.4.2
Rewrite the expression.
6417+315201512-27+27201+92011+2013512-6(3+2018)2
6417+315201512-27+27201+92011+2013512-6(3+2018)2
Step 13.1.2.2.12.5.5
Evaluate the exponent.
6417+315201512-27+27201+9201+2013512-6(3+2018)2
6417+315201512-27+27201+9201+2013512-6(3+2018)2
Step 13.1.2.2.12.6
Multiply 9 by 201.
6417+315201512-27+27201+1809+2013512-6(3+2018)2
Step 13.1.2.2.12.7
Rewrite 2013 as 2013.
6417+315201512-27+27201+1809+2013512-6(3+2018)2
Step 13.1.2.2.12.8
Raise 201 to the power of 3.
6417+315201512-27+27201+1809+8120601512-6(3+2018)2
Step 13.1.2.2.12.9
Rewrite 8120601 as 2012201.
Tap for more steps...
Step 13.1.2.2.12.9.1
Factor 40401 out of 8120601.
6417+315201512-27+27201+1809+40401(201)512-6(3+2018)2
Step 13.1.2.2.12.9.2
Rewrite 40401 as 2012.
6417+315201512-27+27201+1809+2012201512-6(3+2018)2
6417+315201512-27+27201+1809+2012201512-6(3+2018)2
Step 13.1.2.2.12.10
Pull terms out from under the radical.
6417+315201512-27+27201+1809+201201512-6(3+2018)2
6417+315201512-27+27201+1809+201201512-6(3+2018)2
Step 13.1.2.2.13
Add 27 and 1809.
6417+315201512-1836+27201+201201512-6(3+2018)2
Step 13.1.2.2.14
Add 27201 and 201201.
6417+315201512-1836+228201512-6(3+2018)2
Step 13.1.2.2.15
Cancel the common factor of 1836+228201 and 512.
Tap for more steps...
Step 13.1.2.2.15.1
Factor 4 out of 1836.
6417+315201512-4(459)+228201512-6(3+2018)2
Step 13.1.2.2.15.2
Factor 4 out of 228201.
6417+315201512-4(459)+4(57201)512-6(3+2018)2
Step 13.1.2.2.15.3
Factor 4 out of 4(459)+4(57201).
6417+315201512-4(459+57201)512-6(3+2018)2
Step 13.1.2.2.15.4
Cancel the common factors.
Tap for more steps...
Step 13.1.2.2.15.4.1
Factor 4 out of 512.
6417+315201512-4(459+57201)4128-6(3+2018)2
Step 13.1.2.2.15.4.2
Cancel the common factor.
6417+315201512-4(459+57201)4128-6(3+2018)2
Step 13.1.2.2.15.4.3
Rewrite the expression.
6417+315201512-459+57201128-6(3+2018)2
6417+315201512-459+57201128-6(3+2018)2
6417+315201512-459+57201128-6(3+2018)2
Step 13.1.2.2.16
Apply the product rule to 3+2018.
6417+315201512-459+57201128-6(3+201)282
Step 13.1.2.2.17
Raise 8 to the power of 2.
6417+315201512-459+57201128-6(3+201)264
Step 13.1.2.2.18
Cancel the common factor of 2.
Tap for more steps...
Step 13.1.2.2.18.1
Factor 2 out of -6.
6417+315201512-459+57201128+2(-3)(3+201)264
Step 13.1.2.2.18.2
Factor 2 out of 64.
6417+315201512-459+57201128+2-3(3+201)2232
Step 13.1.2.2.18.3
Cancel the common factor.
6417+315201512-459+57201128+2-3(3+201)2232
Step 13.1.2.2.18.4
Rewrite the expression.
6417+315201512-459+57201128-3(3+201)232
6417+315201512-459+57201128-3(3+201)232
Step 13.1.2.2.19
Combine -3 and (3+201)232.
6417+315201512-459+57201128+-3(3+201)232
Step 13.1.2.2.20
Rewrite (3+201)2 as (3+201)(3+201).
6417+315201512-459+57201128+-3((3+201)(3+201))32
Step 13.1.2.2.21
Expand (3+201)(3+201) using the FOIL Method.
Tap for more steps...
Step 13.1.2.2.21.1
Apply the distributive property.
6417+315201512-459+57201128+-3(3(3+201)+201(3+201))32
Step 13.1.2.2.21.2
Apply the distributive property.
6417+315201512-459+57201128+-3(33+3201+201(3+201))32
Step 13.1.2.2.21.3
Apply the distributive property.
6417+315201512-459+57201128+-3(33+3201+2013+201201)32
6417+315201512-459+57201128+-3(33+3201+2013+201201)32
Step 13.1.2.2.22
Simplify and combine like terms.
Tap for more steps...
Step 13.1.2.2.22.1
Simplify each term.
Tap for more steps...
Step 13.1.2.2.22.1.1
Multiply 3 by 3.
6417+315201512-459+57201128+-3(9+3201+2013+201201)32
Step 13.1.2.2.22.1.2
Move 3 to the left of 201.
6417+315201512-459+57201128+-3(9+3201+3201+201201)32
Step 13.1.2.2.22.1.3
Combine using the product rule for radicals.
6417+315201512-459+57201128+-3(9+3201+3201+201201)32
Step 13.1.2.2.22.1.4
Multiply 201 by 201.
6417+315201512-459+57201128+-3(9+3201+3201+40401)32
Step 13.1.2.2.22.1.5
Rewrite 40401 as 2012.
6417+315201512-459+57201128+-3(9+3201+3201+2012)32
Step 13.1.2.2.22.1.6
Pull terms out from under the radical, assuming positive real numbers.
6417+315201512-459+57201128+-3(9+3201+3201+201)32
6417+315201512-459+57201128+-3(9+3201+3201+201)32
Step 13.1.2.2.22.2
Add 9 and 201.
6417+315201512-459+57201128+-3(210+3201+3201)32
Step 13.1.2.2.22.3
Add 3201 and 3201.
6417+315201512-459+57201128+-3(210+6201)32
6417+315201512-459+57201128+-3(210+6201)32
Step 13.1.2.2.23
Cancel the common factor of 210+6201 and 32.
Tap for more steps...
Step 13.1.2.2.23.1
Factor 2 out of -3(210+6201).
6417+315201512-459+57201128+2(-3(105+3201))32
Step 13.1.2.2.23.2
Cancel the common factors.
Tap for more steps...
Step 13.1.2.2.23.2.1
Factor 2 out of 32.
6417+315201512-459+57201128+2(-3(105+3201))2(16)
Step 13.1.2.2.23.2.2
Cancel the common factor.
6417+315201512-459+57201128+2(-3(105+3201))216
Step 13.1.2.2.23.2.3
Rewrite the expression.
6417+315201512-459+57201128+-3(105+3201)16
6417+315201512-459+57201128+-3(105+3201)16
6417+315201512-459+57201128+-3(105+3201)16
Step 13.1.2.2.24
Move the negative in front of the fraction.
6417+315201512-459+57201128-3(105+3201)16
6417+315201512-459+57201128-3(105+3201)16
Step 13.1.2.3
Find the common denominator.
Tap for more steps...
Step 13.1.2.3.1
Multiply 459+57201128 by 44.
6417+315201512-(459+5720112844)-3(105+3201)16
Step 13.1.2.3.2
Multiply 459+57201128 by 44.
6417+315201512-(459+57201)41284-3(105+3201)16
Step 13.1.2.3.3
Multiply 3(105+3201)16 by 3232.
6417+315201512-(459+57201)41284-(3(105+3201)163232)
Step 13.1.2.3.4
Multiply 3(105+3201)16 by 3232.
6417+315201512-(459+57201)41284-3(105+3201)321632
Step 13.1.2.3.5
Reorder the factors of 1284.
6417+315201512-(459+57201)44128-3(105+3201)321632
Step 13.1.2.3.6
Multiply 4 by 128.
6417+315201512-(459+57201)4512-3(105+3201)321632
Step 13.1.2.3.7
Multiply 16 by 32.
6417+315201512-(459+57201)4512-3(105+3201)32512
6417+315201512-(459+57201)4512-3(105+3201)32512
Step 13.1.2.4
Combine the numerators over the common denominator.
6417+315201-(459+57201)4-3(105+3201)32512
Step 13.1.2.5
Simplify each term.
Tap for more steps...
Step 13.1.2.5.1
Apply the distributive property.
6417+315201+(-1459-(57201))4-3(105+3201)32512
Step 13.1.2.5.2
Multiply -1 by 459.
6417+315201+(-459-(57201))4-3(105+3201)32512
Step 13.1.2.5.3
Multiply 57 by -1.
6417+315201+(-459-57201)4-3(105+3201)32512
Step 13.1.2.5.4
Apply the distributive property.
6417+315201-4594-572014-3(105+3201)32512
Step 13.1.2.5.5
Multiply -459 by 4.
6417+315201-1836-572014-3(105+3201)32512
Step 13.1.2.5.6
Multiply 4 by -57.
6417+315201-1836-228201-3(105+3201)32512
Step 13.1.2.5.7
Apply the distributive property.
6417+315201-1836-228201+(-3105-3(3201))32512
Step 13.1.2.5.8
Multiply -3 by 105.
6417+315201-1836-228201+(-315-3(3201))32512
Step 13.1.2.5.9
Multiply 3 by -3.
6417+315201-1836-228201+(-315-9201)32512
Step 13.1.2.5.10
Apply the distributive property.
6417+315201-1836-228201-31532-920132512
Step 13.1.2.5.11
Multiply -315 by 32.
6417+315201-1836-228201-10080-920132512
Step 13.1.2.5.12
Multiply 32 by -9.
6417+315201-1836-228201-10080-288201512
6417+315201-1836-228201-10080-288201512
Step 13.1.2.6
Simplify terms.
Tap for more steps...
Step 13.1.2.6.1
Subtract 1836 from 6417.
4581+315201-228201-10080-288201512
Step 13.1.2.6.2
Subtract 10080 from 4581.
-5499+315201-228201-288201512
Step 13.1.2.6.3
Subtract 228201 from 315201.
-5499+87201-288201512
Step 13.1.2.6.4
Subtract 288201 from 87201.
-5499-201201512
Step 13.1.2.6.5
Rewrite -5499 as -1(5499).
-1(5499)-201201512
Step 13.1.2.6.6
Factor -1 out of -201201.
-1(5499)-(201201)512
Step 13.1.2.6.7
Factor -1 out of -1(5499)-(201201).
-1(5499+201201)512
Step 13.1.2.6.8
Move the negative in front of the fraction.
-5499+201201512
-5499+201201512
-5499+201201512
-5499+201201512
Step 13.2
Write the x and y coordinates in point form.
(3+2018,-5499+201201512)
(3+2018,-5499+201201512)
Step 14
These are the turning points.
(3-2018,-5499-201201512)
(0,0)
(3+2018,-5499+201201512)
Step 15
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay