# Calculus Examples

Set as a function of .

Differentiate.

By the Sum Rule, the derivative of with respect to is .

Differentiate using the Power Rule which states that is where .

Evaluate .

Since is constant with respect to , the derivative of with respect to is .

Differentiate using the Power Rule which states that is where .

Multiply by .

Differentiate using the Constant Rule.

Since is constant with respect to , the derivative of with respect to is .

Add and .

Add to both sides of the equation.

Divide each term by and simplify.

Divide each term in by .

Reduce the expression by cancelling the common factors.

Cancel the common factor.

Divide by .

Replace the variable with in the expression.

Simplify the result.

Simplify each term.

Apply the product rule to .

Raise to the power of .

Raise to the power of .

Multiply .

Combine and .

Multiply by .

Move the negative in front of the fraction.

To write as a fraction with a common denominator, multiply by .

Write each expression with a common denominator of , by multiplying each by an appropriate factor of .

Combine.

Multiply by .

Combine the numerators over the common denominator.

Simplify the numerator.

Multiply by .

Subtract from .

Move the negative in front of the fraction.

To write as a fraction with a common denominator, multiply by .

Write each expression with a common denominator of , by multiplying each by an appropriate factor of .

Combine.

Multiply by .

Combine the numerators over the common denominator.

Simplify the numerator.

Multiply by .

Add and .

Move the negative in front of the fraction.

The final answer is .

The horizontal tangent lines on function are .