Calculus Examples

Set as a function of .
Find the derivative.
Tap for more steps...
By the Sum Rule, the derivative of with respect to is .
Evaluate .
Tap for more steps...
Since is constant with respect to , the derivative of with respect to is .
Differentiate using the Power Rule which states that is where .
Multiply by .
Since is constant with respect to , the derivative of with respect to is .
Add and .
Divide each term by and simplify.
Tap for more steps...
Divide each term in by .
Reduce the expression by cancelling the common factors.
Tap for more steps...
Cancel the common factor.
Divide by .
Divide by .
Solve the original function at .
Tap for more steps...
Replace the variable with in the expression.
Simplify the result.
Tap for more steps...
Simplify each term.
Tap for more steps...
Remove parentheses.
Raising to any positive power yields .
Multiply by .
Add and .
The final answer is .
The horizontal tangent lines on function are .
Enter YOUR Problem
Mathway requires javascript and a modern browser.
Cookies & Privacy
This website uses cookies to ensure you get the best experience on our website.
More Information