Calculus Examples

Set as a function of .
Find the derivative.
Tap for more steps...
By the Sum Rule, the derivative of with respect to is .
Differentiate using the Power Rule which states that is where .
Evaluate .
Tap for more steps...
Since is constant with respect to , the derivative of with respect to is .
Differentiate using the Power Rule which states that is where .
Multiply by .
Since is constant with respect to , the derivative of with respect to is .
Add and .
Set the derivative equal to then solve the equation .
Tap for more steps...
Subtract from both sides of the equation.
Divide each term by and simplify.
Tap for more steps...
Divide each term in by .
Reduce the expression by cancelling the common factors.
Tap for more steps...
Cancel the common factor.
Divide by .
Divide by .
Solve the original function at .
Tap for more steps...
Replace the variable with in the expression.
Simplify the result.
Tap for more steps...
Simplify each term.
Tap for more steps...
Raise to the power of .
Multiply by .
Simplify by subtracting numbers.
Tap for more steps...
Subtract from .
Subtract from .
The final answer is .
The horizontal tangent lines on function are .
Enter YOUR Problem
Mathway requires javascript and a modern browser.
Cookies & Privacy
This website uses cookies to ensure you get the best experience on our website.
More Information