Algebra Examples
,
Step 1
Write the system of equations in matrix form.
Step 2
Perform the row operation on (row ) in order to convert some elements in the row to .
Replace (row ) with the row operation in order to convert some elements in the row to the desired value .
Replace (row ) with the actual values of the elements for the row operation .
Simplify (row ).
Perform the row operation on (row ) in order to convert some elements in the row to .
Replace (row ) with the row operation in order to convert some elements in the row to the desired value .
Replace (row ) with the actual values of the elements for the row operation .
Simplify (row ).
Perform the row operation on (row ) in order to convert some elements in the row to .
Replace (row ) with the row operation in order to convert some elements in the row to the desired value .
Replace (row ) with the actual values of the elements for the row operation .
Simplify (row ).
Step 3
Use the result matrix to declare the final solutions to the system of equations.
Step 4
The solution is the set of ordered pairs that makes the system true.
Step 5
Decompose a solution vector by re-arranging each equation represented in the row-reduced form of the augmented matrix by solving for the dependent variable in each row yields the vector equality.