# Algebra Examples

Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .

+ | - | - |

Divide the highest order term in the dividend by the highest order term in divisor .

+ | - | - |

Multiply the new quotient term by the divisor.

+ | - | - | |||||||

+ | + |

The expression needs to be subtracted from the dividend, so change all the signs in

+ | - | - | |||||||

- | - |

After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.

+ | - | - | |||||||

- | - | ||||||||

- |

Pull the next terms from the original dividend down into the current dividend.

+ | - | - | |||||||

- | - | ||||||||

- | - |

Divide the highest order term in the dividend by the highest order term in divisor .

- | |||||||||

+ | - | - | |||||||

- | - | ||||||||

- | - |

Multiply the new quotient term by the divisor.

- | |||||||||

+ | - | - | |||||||

- | - | ||||||||

- | - | ||||||||

- | - |

The expression needs to be subtracted from the dividend, so change all the signs in

- | |||||||||

+ | - | - | |||||||

- | - | ||||||||

- | - | ||||||||

+ | + |

After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.

- | |||||||||

+ | - | - | |||||||

- | - | ||||||||

- | - | ||||||||

+ | + | ||||||||

Since the remander is , the final answer is the quotient.

Since the final term in the resulting expression is not a fraction, the remainder is .