Algebra Examples

The transformation defines a map from to . To prove the transformation is linear, the transformation must preserve scalar multiplication, addition, and the zero vector.
S:
First prove the transform preserves this property.
Set up two matrices to test the addition property is preserved for .
Add the two matrices.
Apply the transformation to the vector.
Simplify each element of the matrix .
Tap for more steps...
Simplify element by multiplying .
Simplify element by multiplying .
Simplify element by multiplying .
Break the result into two matrices by grouping the variables.
The addition property of the transformation holds true.
For a transformation to be linear, it must maintain scalar multiplication.
Factor the from each element.
Tap for more steps...
Multiply by each element in the matrix.
Apply the transformation to the vector.
Simplify each element of the matrix .
Tap for more steps...
Simplify element by multiplying .
Simplify element by multiplying .
Simplify element by multiplying .
Factor each element of the matrix.
Tap for more steps...
Factor element by multiplying .
Factor element by multiplying .
Factor element by multiplying .
The second property of linear transformations is preserved in this transformation.
For the transformation to be linear, the zero vector must be preserved.
Apply the transformation to the vector.
Simplify each element of the matrix .
Tap for more steps...
Simplify element by multiplying .
Simplify element by multiplying .
Simplify element by multiplying .
The zero vector is preserved by the transformation.
Since all three properties of linear transformations are not met, this is not a linear transformation.
Linear Transformation
Enter YOUR Problem
Mathway requires javascript and a modern browser.