Algebra Examples

Assign the matrix the name to simplify the descriptions throughout the problem.
Set up the formula to find the characteristic equation .
Substitute the known values in the formula.
Subtract the eigenvalue times the identity matrix from the original matrix.
Tap for more steps...
Multiply by each element of the matrix.
Simplify each element of the matrix .
Tap for more steps...
Simplify element by multiplying to get .
Simplify element by multiplying to get .
Simplify element by multiplying to get .
Simplify element by multiplying to get .
Combine the similar matrices with each others.
Simplify each element of the matrix .
Tap for more steps...
Combine the same size matrices and by adding the corresponding elements of each.
Simplify element of the matrix.
Simplify element of the matrix.
The determinant of is .
Tap for more steps...
These are both valid notations for the determinant of a matrix.
The determinant of a matrix can be found using the formula .
Simplify the determinant.
Tap for more steps...
Simplify each term.
Tap for more steps...
Expand using the FOIL Method.
Tap for more steps...
Apply the distributive property.
Apply the distributive property.
Apply the distributive property.
Remove parentheses.
Simplify and combine like terms.
Tap for more steps...
Simplify each term.
Tap for more steps...
Move .
Use the power rule to combine exponents.
Add and to get .
Simplify .
Tap for more steps...
Multiply by to get .
Multiply by to get .
Multiply by to get .
Multiply by to get .
Multiply by to get .
Subtract from to get .
Multiply by to get .
Subtract from to get .
Set the characteristic polynomial equal to to find the eigenvalues .
Solve the equation for .
Tap for more steps...
Use the quadratic formula to find the solutions.
Substitute the values , , and into the quadratic formula and solve for .
Simplify.
Tap for more steps...
Simplify the numerator.
Tap for more steps...
Raise to the power of to get .
Multiply by to get .
Multiply by to get .
Subtract from to get .
Simplify the denominator.
Tap for more steps...
Rewrite.
Multiply by to get .
Simplify the expression to solve for the portion of the .
Tap for more steps...
Simplify the numerator.
Tap for more steps...
Raise to the power of to get .
Multiply by to get .
Multiply by to get .
Subtract from to get .
Simplify the denominator.
Tap for more steps...
Rewrite.
Multiply by to get .
-----Begin simplification-----
Simplify the expression to solve for the portion of the .
Tap for more steps...
Simplify the numerator.
Tap for more steps...
Raise to the power of to get .
Multiply by to get .
Multiply by to get .
Subtract from to get .
Simplify the denominator.
Tap for more steps...
Rewrite.
Multiply by to get .
-----Begin simplification-----
The final answer is the combination of both solutions.
The eigenvector for is equal to the null space of the matrix minus the eigenvalue times the identity matrix.
Substitute the known values into the formula.
Simplify the matrix expression.
Tap for more steps...
Multiply by each element of the matrix.
Simplify each element of the matrix .
Tap for more steps...
Simplify element by multiplying to get .
Simplify element by multiplying to get .
Simplify element by multiplying to get .
Simplify element by multiplying to get .
Simplify each element of the matrix .
Tap for more steps...
Combine the same size matrices and by adding the corresponding elements of each.
Simplify element of the matrix.
Simplify element of the matrix.
Simplify element of the matrix.
Simplify element of the matrix.
Find the reduced row echelon form of the matrix.
Tap for more steps...
Perform the row operation on (row ) in order to convert some elements in the row to .
Tap for more steps...
Replace (row ) with the row operation in order to convert some elements in the row to the desired value .
Replace (row ) with the actual values of the elements for the row operation .
Simplify (row ).
Perform the row operation on (row ) in order to convert some elements in the row to .
Tap for more steps...
Replace (row ) with the row operation in order to convert some elements in the row to the desired value .
Replace (row ) with the actual values of the elements for the row operation .
Simplify (row ).
Use the result matrix to declare the final solutions to the system of equations.
This expression is the solution set for the system of equations.
Decompose a solution vector by re-arranging each equation represented in the row-reduced form of the augmented matrix by solving for the dependent variable in each row yields the vector equality.
Express the vector as a linear combination of column vector using the properties of vector column addition.
The null space of the set is the set of vectors created from the free variables of the system.
The eigenvector for is equal to the null space of the matrix minus the eigenvalue times the identity matrix.
Substitute the known values into the formula.
Simplify the matrix expression.
Tap for more steps...
Multiply by each element of the matrix.
Simplify each element of the matrix .
Tap for more steps...
Simplify element by multiplying to get .
Simplify element by multiplying to get .
Simplify element by multiplying to get .
Simplify element by multiplying to get .
Simplify each element of the matrix .
Tap for more steps...
Combine the same size matrices and by adding the corresponding elements of each.
Simplify element of the matrix.
Simplify element of the matrix.
Simplify element of the matrix.
Simplify element of the matrix.
Find the reduced row echelon form of the matrix.
Tap for more steps...
Perform the row operation on (row ) in order to convert some elements in the row to .
Tap for more steps...
Replace (row ) with the row operation in order to convert some elements in the row to the desired value .
Replace (row ) with the actual values of the elements for the row operation .
Simplify (row ).
Perform the row operation on (row ) in order to convert some elements in the row to .
Tap for more steps...
Replace (row ) with the row operation in order to convert some elements in the row to the desired value .
Replace (row ) with the actual values of the elements for the row operation .
Simplify (row ).
Use the result matrix to declare the final solutions to the system of equations.
This expression is the solution set for the system of equations.
Decompose a solution vector by re-arranging each equation represented in the row-reduced form of the augmented matrix by solving for the dependent variable in each row yields the vector equality.
Express the vector as a linear combination of column vector using the properties of vector column addition.
The null space of the set is the set of vectors created from the free variables of the system.
The eigenspace of is the union of the vector space for each eigenvalue.
Enter YOUR Problem

Enter the email address associated with your Mathway account below and we'll send you a link to reset your password.

Please enter an email address
Please enter a valid email address
The email address you entered was not found in our system
The email address you entered is associated with a Facebook user
We're sorry, we were unable to process your request at this time

Mathway Premium

Step-by-step work + explanations
  •    Step-by-step work
  •    Detailed explanations
  •    No advertisements
  •    Access anywhere
Access the steps on both the Mathway website and mobile apps
$--.--/month
$--.--/year (--%)

Mathway Premium

Visa and MasterCard security codes are located on the back of card and are typically a separate group of 3 digits to the right of the signature strip.

American Express security codes are 4 digits located on the front of the card and usually towards the right.
This option is required to subscribe.
Go Back

Step-by-step upgrade complete!

Mathway requires javascript and a modern browser.
  [ x 2     1 2     π     x d x   ]