Beispiele

Beschreibe die Transformation
Schritt 1
Die Mutterfunktion ist die einfachste Form des gegebenen Funktionstypen.
Schritt 2
Nehme an, dass ist und ist .
Schritt 3
Die Transformation von der ersten Gleichung zur zweiten kann bestimmt werden, indem , und für jede Gleichung gefunden wird.
Schritt 4
Ermittle , und für .
Schritt 5
Ermittle , und für .
Schritt 6
Die horizontale Verschiebung hängt vom Wert von ab. Die horizontale Verschiebung wird wie folgt beschrieben:
– Der Graph ist um Einheiten nach links verschoben.
– Der Graph ist um Einheiten nach rechts verschoben.
Horizontale Verschiebung: Linke Einheiten
Schritt 7
Die vertikale Verschiebung hängt vom Wert von ab. Die vertikale Verschiebung wird wie folgt beschrieben:
- Der Graph ist um Einheiten nach oben verschoben.
- The graph is shifted down units.
Vertikale Verschiebung: Einheiten nach unten
Schritt 8
Das Vorzeichen von beschreibt die Spiegelung an der x-Achse. bedeutet, dass der Graph an der x-Achse gespiegelt wird.
Spiegelung an der x-Achse: Keine
Schritt 9
Um die Transformation zu bestimmen, vergleiche die beiden Funktionen und überprüfe, ob es eine horizontale oder vertikale Verschiebung, eine Spiegelung an der x-Achse und eine vertikale Streckung gibt.
Mutterfunktion:
Horizontale Verschiebung: Linke Einheiten
Vertikale Verschiebung: Einheiten nach unten
Spiegelung an der x-Achse: Keine
Schritt 10
Gib DEINE Aufgabe ein
Mathway benötigt Javascript und einen modernen Browser.