Analysis Beispiele

Ermittle die erste Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen...
Gemäß der Summenregel ist die Ableitung von nach .
Berechne .
Tippen, um mehr Schritte zu sehen...
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Mutltipliziere mit .
Berechne .
Tippen, um mehr Schritte zu sehen...
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Mutltipliziere mit .
Ermittle die zweite Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen...
Gemäß der Summenregel ist die Ableitung von nach .
Berechne .
Tippen, um mehr Schritte zu sehen...
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Mutltipliziere mit .
Berechne .
Tippen, um mehr Schritte zu sehen...
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Mutltipliziere mit .
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen...
Faktorisiere aus heraus.
Faktorisiere aus heraus.
Faktorisiere aus heraus.
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen...
Teile jeden Ausdruck durch und vereinfache.
Tippen, um mehr Schritte zu sehen...
Teile jeden Ausdruck in durch .
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen...
Kürze den gemeinsamen Faktor.
Dividiere durch .
Dividiere durch .
Ziehe die . Wurzel auf beiden Seiten von , um den Exponenten auf der linken Seite zu entfernen.
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen...
Vereinfache die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen...
Schreibe als um.
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
ist gleich .
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen...
Setze den Faktor gleich .
Addiere zu beiden Seiten der Gleichung.
Teile jeden Ausdruck durch und vereinfache.
Tippen, um mehr Schritte zu sehen...
Teile jeden Ausdruck in durch .
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen...
Kürze den gemeinsamen Faktor.
Dividiere durch .
Die Lösung ist das Ergebnis von und .
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Berechne die zweite Ableitung.
Tippen, um mehr Schritte zu sehen...
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen...
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Mutltipliziere mit .
Mutltipliziere mit .
Addiere und .
Wende den Test der ersten Ableitung an.
Tippen, um mehr Schritte zu sehen...
Teile in separate Intervalle um die -Werte herum auf, die die erste Ableitung zu oder nicht definiert machen.
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Tippen, um mehr Schritte zu sehen...
Ersetze in dem Ausdruck die Variable durch .
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen...
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen...
Potenziere mit .
Mutltipliziere mit .
Potenziere mit .
Mutltipliziere mit .
Subtrahiere von .
Die endgültige Lösung ist .
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Tippen, um mehr Schritte zu sehen...
Ersetze in dem Ausdruck die Variable durch .
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen...
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen...
Potenziere mit .
Mutltipliziere mit .
Potenziere mit .
Mutltipliziere mit .
Subtrahiere von .
Die endgültige Lösung ist .
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Tippen, um mehr Schritte zu sehen...
Ersetze in dem Ausdruck die Variable durch .
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen...
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen...
Potenziere mit .
Mutltipliziere mit .
Potenziere mit .
Mutltipliziere mit .
Subtrahiere von .
Die endgültige Lösung ist .
Da die erste Ableitung das Vorzeichen um nicht gewechselt hat, ist dies kein lokales Maximum oder Minimum.
Kein lokales Maximum oder Minimum
Da die erste Ableitung um herum das Vorzeichen von negativ zu positiv gewechselt hat, ist ein lokales Minimum.
ist ein lokales Minimum
ist ein lokales Minimum
Bitte gib DEIN Problem ein
Mathway benötigt Javascript und einen modernen Browser.
Cookies und Datenschutz
Diese Website verwendet Cookies, um sicherzustellen, dass du das beste Erlebnis auf unserer Website erhältst.
Mehr Informationen