Analysis Beispiele

Ermitteln, wo ansteigend/abfallend mittels Ableitungen
Bestimme die Ableitung.
Tippen, um mehr Schritte zu sehen...
Differenziere.
Tippen, um mehr Schritte zu sehen...
Gemäß der Summenregel ist die Ableitung von nach .
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Berechne .
Tippen, um mehr Schritte zu sehen...
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Mutltipliziere mit .
Berechne .
Tippen, um mehr Schritte zu sehen...
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Mutltipliziere mit .
Setze die Ableitung gleich .
Löse nach auf.
Tippen, um mehr Schritte zu sehen...
Faktorisiere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen...
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen...
Faktorisiere aus heraus.
Faktorisiere aus heraus.
Faktorisiere aus heraus.
Faktorisiere aus heraus.
Faktorisiere aus heraus.
Faktorisiere.
Tippen, um mehr Schritte zu sehen...
Faktorisiere mithilfe des Satzes über rationale Nullstellen.
Tippen, um mehr Schritte zu sehen...
Wenn eine Polynomfunktion ganzzahlige Koeffizienten hat, dann hat jede rationale Nullstelle die Form , wobei ein Teiler der Konstanten und ein Teiler des Leitkoeffizienten ist.
Ermittle jede Kombination von . Dies sind die möglichen Nullstellen der Polynomfunktion.
Setze ein und vereinfache den Ausdruck. In diesem Fall ist der Ausdruck gleich , folglich ist eine Nullstelle des Polynoms.
Tippen, um mehr Schritte zu sehen...
Setze in das Polynom ein.
Potenziere mit .
Addiere und .
Subtrahiere von .
Da eine bekannte Nullstelle ist, dividiere das Polynom durch , um das Quotientenpolynom zu bestimmen. Dieses Polynom kann dann verwendet werden, um die restlichen Nullstellen zu finden.
Dividiere durch .
Schreibe als eine Menge von Faktoren.
Entferne unnötige Klammern.
Teile jeden Ausdruck durch und vereinfache.
Tippen, um mehr Schritte zu sehen...
Teile jeden Ausdruck in durch .
Vereinfache .
Tippen, um mehr Schritte zu sehen...
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen...
Kürze den gemeinsamen Faktor.
Dividiere durch .
Multipliziere aus durch Multiplizieren jedes Terms des ersten Ausdrucks mit jedem Term des zweiten Ausdrucks.
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen...
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen...
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen...
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen...
Potenziere mit .
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Addiere und .
Mutltipliziere mit .
Bringe auf die linke Seite von .
Schreibe als um.
Schreibe als um.
Mutltipliziere mit .
Vereinfache durch Addieren von Termen.
Tippen, um mehr Schritte zu sehen...
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen...
Subtrahiere von .
Addiere und .
Subtrahiere von .
Dividiere durch .
Faktorisiere mithilfe des Satzes über rationale Nullstellen.
Tippen, um mehr Schritte zu sehen...
Wenn eine Polynomfunktion ganzzahlige Koeffizienten hat, dann hat jede rationale Nullstelle die Form , wobei ein Teiler der Konstanten und ein Teiler des Leitkoeffizienten ist.
Ermittle jede Kombination von . Dies sind die möglichen Nullstellen der Polynomfunktion.
Setze ein und vereinfache den Ausdruck. In diesem Fall ist der Ausdruck gleich , folglich ist eine Nullstelle des Polynoms.
Tippen, um mehr Schritte zu sehen...
Setze in das Polynom ein.
Potenziere mit .
Addiere und .
Subtrahiere von .
Da eine bekannte Nullstelle ist, dividiere das Polynom durch , um das Quotientenpolynom zu bestimmen. Dieses Polynom kann dann verwendet werden, um die restlichen Nullstellen zu finden.
Dividiere durch .
Schreibe als eine Menge von Faktoren.
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen...
Setze gleich .
Addiere zu beiden Seiten der Gleichung.
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen...
Setze gleich .
Löse nach auf.
Tippen, um mehr Schritte zu sehen...
Verwende die Quadratformel, um die Lösungen zu finden.
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Vereinfache.
Tippen, um mehr Schritte zu sehen...
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen...
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Mutltipliziere mit .
Mutltipliziere mit .
Subtrahiere von .
Schreibe als um.
Schreibe als um.
Schreibe als um.
Mutltipliziere mit .
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Tippen, um mehr Schritte zu sehen...
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen...
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Mutltipliziere mit .
Mutltipliziere mit .
Subtrahiere von .
Schreibe als um.
Schreibe als um.
Schreibe als um.
Mutltipliziere mit .
Ändere das zu .
Schreibe als um.
Faktorisiere aus heraus.
Faktorisiere aus heraus.
Ziehe das Minuszeichen vor den Bruch.
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Tippen, um mehr Schritte zu sehen...
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen...
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Mutltipliziere mit .
Mutltipliziere mit .
Subtrahiere von .
Schreibe als um.
Schreibe als um.
Schreibe als um.
Mutltipliziere mit .
Ändere das zu .
Schreibe als um.
Faktorisiere aus heraus.
Faktorisiere aus heraus.
Ziehe das Minuszeichen vor den Bruch.
Die endgültige Lösung ist die Kombination beider Lösungen.
Die endgültige Lösung sind alle Werte, die wahr machen.
Die Werte, die die Ableitung gleich machen, sind .
Nach dem Auffinden des Punktes, der die Ableitung gleich oder undefiniert macht, ist das Intervall, in dem geprüft werden muss, wo ansteigt und abfällt, gleich .
Setze einen Wert aus dem Intervall in die Ableitung ein, um zu bestimmen, ob die Funktion ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen...
Ersetze in dem Ausdruck die Variable durch .
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen...
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen...
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Mutltipliziere mit .
Mutltipliziere mit .
Vereinfache durch Addieren und Subtrahieren.
Tippen, um mehr Schritte zu sehen...
Addiere und .
Subtrahiere von .
Die endgültige Lösung ist .
Bei ist die Ableitung . Da dies negativ ist, nimmt die Funktion im Intervall ab.
Abfallend im Intervall da
Abfallend im Intervall da
Setze einen Wert aus dem Intervall in die Ableitung ein, um zu bestimmen, ob die Funktion ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen...
Ersetze in dem Ausdruck die Variable durch .
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen...
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen...
Potenziere mit .
Mutltipliziere mit .
Mutltipliziere mit .
Vereinfache durch Addieren und Subtrahieren.
Tippen, um mehr Schritte zu sehen...
Addiere und .
Subtrahiere von .
Die endgültige Lösung ist .
Bei ist die Ableitung . Da dies positiv ist, steigt die Funktion im Intervall an.
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Liste die Intervalle auf, in denen die Funktion ansteigt und in denen sie abfällt.
Ansteigend im Intervall:
Abfallend im Intervall:
Bitte gib DEIN Problem ein
Mathway benötigt Javascript und einen modernen Browser.
Cookies und Datenschutz
Diese Website verwendet Cookies, um sicherzustellen, dass du das beste Erlebnis auf unserer Website erhältst.
Mehr Informationen