حساب المثلثات الأمثلة
خطوة 1
خطوة 1.1
حلّل إلى عوامل باستخدام اختبار الجذور النسبية.
خطوة 1.1.1
إذا كانت دالة متعددة الحدود لها معاملات عدد صحيح، فإن كل صفر نسبي سيكون بالصيغة والتي تكون فيها هي عامل الثابت و هي عامل المعامل الرئيسي.
خطوة 1.1.2
أوجِد كل تركيبة من تركيبات . هذه هي الجذور المحتملة للدالة متعددة الحدود.
خطوة 1.1.3
عوّض بـ وبسّط العبارة. في هذه الحالة، العبارة تساوي ، إذن هو جذر متعدد الحدود.
خطوة 1.1.3.1
عوّض بـ في متعدد الحدود.
خطوة 1.1.3.2
ارفع إلى القوة .
خطوة 1.1.3.3
ارفع إلى القوة .
خطوة 1.1.3.4
اضرب في .
خطوة 1.1.3.5
أضف و.
خطوة 1.1.3.6
أضف و.
خطوة 1.1.3.7
اطرح من .
خطوة 1.1.4
بما أن جذر معروف، اقسِم متعدد الحدود على لإيجاد ناتج قسمة متعدد الحدود. ويمكن بعد ذلك استخدام متعدد الحدود لإيجاد الجذور المتبقية.
خطوة 1.1.5
اقسِم على .
خطوة 1.1.5.1
عيّن متعددات الحدود التي ستتم قسمتها. وفي حالة عدم وجود حد لكل أُس، أدخل حدًا واحدًا بقيمة .
- | + | + | - |
خطوة 1.1.5.2
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
- | + | + | - |
خطوة 1.1.5.3
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
- | + | + | - | ||||||||
+ | - |
خطوة 1.1.5.4
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
- | + | + | - | ||||||||
- | + |
خطوة 1.1.5.5
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
- | + | + | - | ||||||||
- | + | ||||||||||
+ |
خطوة 1.1.5.6
أخرِج الحدود التالية من المقسوم الأصلي لأسفل نحو المقسوم الحالي.
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + |
خطوة 1.1.5.7
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
+ | |||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + |
خطوة 1.1.5.8
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
+ | |||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | - |
خطوة 1.1.5.9
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
+ | |||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + |
خطوة 1.1.5.10
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
+ | |||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ |
خطوة 1.1.5.11
أخرِج الحدود التالية من المقسوم الأصلي لأسفل نحو المقسوم الحالي.
+ | |||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - |
خطوة 1.1.5.12
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
+ | + | ||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - |
خطوة 1.1.5.13
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
+ | + | ||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - |
خطوة 1.1.5.14
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
+ | + | ||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + |
خطوة 1.1.5.15
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
+ | + | ||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
خطوة 1.1.5.16
بما أن الباقي يساوي ، إذن الإجابة النهائية هي ناتج القسمة.
خطوة 1.1.6
اكتب في صورة مجموعة من العوامل.
خطوة 1.2
حلّل إلى عوامل باستخدام طريقة AC.
خطوة 1.2.1
حلّل إلى عوامل باستخدام طريقة AC.
خطوة 1.2.1.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 1.2.1.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 1.2.2
احذِف الأقواس غير الضرورية.
خطوة 2
خطوة 2.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 2.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 3
خطوة 3.1
ألغِ العامل المشترك.
خطوة 3.2
أعِد كتابة العبارة.
خطوة 4
خطوة 4.1
ألغِ العامل المشترك.
خطوة 4.2
اقسِم على .
خطوة 5
لإيجاد الفجوات في الرسم البياني، انظر إلى عوامل القاسم المحذوفة.
خطوة 6
خطوة 6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 6.2
اطرح من كلا المتعادلين.
خطوة 6.3
عوّض بـ عن في وبسّط.
خطوة 6.3.1
عوّض بـ عن لإيجاد الإحداثي للفجوة.
خطوة 6.3.2
اطرح من .
خطوة 6.4
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 6.5
اطرح من كلا المتعادلين.
خطوة 6.6
عوّض بـ عن في وبسّط.
خطوة 6.6.1
عوّض بـ عن لإيجاد الإحداثي للفجوة.
خطوة 6.6.2
اطرح من .
خطوة 6.7
الفجوات في الرسم البياني هي النقاط التي يكون عندها أي عامل من العوامل المحذوفة مساويًا لـ .
خطوة 7