حساب التفاضل والتكامل الأمثلة
,
خطوة 1
خطوة 1.1
أوجِد مشتقة المتعادلين.
خطوة 1.2
مشتق بالنسبة إلى يساوي .
خطوة 1.3
أوجِد مشتقة المتعادل الأيمن.
خطوة 1.3.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.3.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.3.1.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 1.3.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.3.2
أوجِد المشتقة.
خطوة 1.3.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.2.3
بسّط العبارة.
خطوة 1.3.2.3.1
اضرب في .
خطوة 1.3.2.3.2
أعِد ترتيب العوامل في .
خطوة 1.4
عدّل المعادلة بمساواة قيمة الطرف الأيسر بقيمة الطرف الأيمن.
خطوة 2
خطوة 2.1
عيّن المشتق.
خطوة 2.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 2.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.3.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 2.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.5
ارفع إلى القوة .
خطوة 2.6
ارفع إلى القوة .
خطوة 2.7
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.8
أضف و.
خطوة 2.9
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.10
اضرب في .
خطوة 3
عوّض في المعادلة التفاضلية المُعطاة.
خطوة 4
عوّض بقيمة التي تساوي .
خطوة 5
خطوة 5.1
اقسِم كل حد في على وبسّط.
خطوة 5.1.1
اقسِم كل حد في على .
خطوة 5.1.2
بسّط الطرف الأيسر.
خطوة 5.1.2.1
ألغِ العامل المشترك لـ .
خطوة 5.1.2.1.1
ألغِ العامل المشترك.
خطوة 5.1.2.1.2
أعِد كتابة العبارة.
خطوة 5.1.2.2
ألغِ العامل المشترك لـ .
خطوة 5.1.2.2.1
ألغِ العامل المشترك.
خطوة 5.1.2.2.2
اقسِم على .
خطوة 5.1.3
بسّط الطرف الأيمن.
خطوة 5.1.3.1
ألغِ العامل المشترك لـ .
خطوة 5.1.3.1.1
ألغِ العامل المشترك.
خطوة 5.1.3.1.2
أعِد كتابة العبارة.
خطوة 5.2
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 5.3
بسّط .
خطوة 5.3.1
أعِد كتابة بالصيغة .
خطوة 5.3.2
أي جذر لـ هو .
خطوة 5.3.3
بسّط القاسم.
خطوة 5.3.3.1
أعِد كتابة بالصيغة .
خطوة 5.3.3.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 5.4
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 5.4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 5.4.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 5.4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.