Nhập bài toán...
Lượng giác Ví dụ
Step 1
Đối với bất kỳ , các tiệm cận đứng xảy ra tại , trong đó là một số nguyên. Sử dụng chu kì cơ bản cho , , để tìm các tiệm cận đứng cho . Đặt phần bên trong của hàm secant, , cho bằng để tìm vị trí của tiệm cận đứng cho .
Cộng cho cả hai vế của phương trình.
Đặt phần bên trong hàm secant bằng .
Cộng cho cả hai vế của phương trình.
Chu kỳ cơ bản cho sẽ xảy ra tại , nơi và là các tiệm cận đứng.
Tìm chu kỳ để tìm nơi các tiệm cận đứng tồn tại. Tiệm cận đứng xảy ra mỗi nửa chu kỳ.
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa và là .
Chia cho .
Các tiệm cận đứng cho xảy ra tại , và mỗi , trong đó là một số nguyên. Đây là nửa chu kỳ.
Secant chỉ có các tiệm cận đứng.
Không có các tiệm cận ngang
Không có các tiệm cận xiên
Các tiệm cận đứng: nơi là một số nguyên
Không có các tiệm cận ngang
Không có các tiệm cận xiên
Các tiệm cận đứng: nơi là một số nguyên
Step 2
Sử dụng dạng để tìm các biến được sử dụng để tìm biên độ, chu kỳ, độ lệch pha, và sự dịch chuyển dọc.
Step 3
Vì đồ thị của hàm không có giá trị cực đại hoặc cực tiểu, nên không có giá trị nào cho biên độ.
Biên độ: Không có
Step 4
Chu kỳ của hàm số có thể được tính bằng .
Thay thế với trong công thức cho chu kỳ.
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa và là .
Chia cho .
Step 5
Độ lệch pha của hàm số có thể được tính từ .
Độ lệch pha:
Thay thế các giá trị của và vào phương trình cho độ lệch pha.
Độ lệch pha:
Chia cho .
Độ lệch pha:
Độ lệch pha:
Step 6
Liệt kê các tính chất của hàm lượng giác.
Biên độ: Không có
Chu kỳ:
Độ lệch pha: ( sang bên phải)
Dịch chuyển dọc: Không có
Step 7
Hàm lượng giác có thể được vẽ đồ thị bằng biên độ, chu kỳ, độ lệch pha, sự dịch chuyển dọc và các điểm.
Các tiệm cận đứng: nơi là một số nguyên
Biên độ: Không có
Chu kỳ:
Độ lệch pha: ( sang bên phải)
Dịch chuyển dọc: Không có
Step 8