Nhập bài toán...
Giải tích Ví dụ
Step 1
Viết ở dạng một hàm số.
Step 2
Theo Quy tắc tổng, đạo hàm của đối với là .
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Vì là hằng số đối với , đạo hàm của đối với là .
Cộng và .
Step 3
Vì không đổi đối với , nên đạo hàm của đối với là .
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Nhân với .
Step 4
Để tìm các giá trị cực đại địa phương và cực tiểu địa phương của hàm số, đặt đạo hàm bằng và giải.
Step 5
Tìm đạo hàm bậc một.
Theo Quy tắc tổng, đạo hàm của đối với là .
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Vì là hằng số đối với , đạo hàm của đối với là .
Cộng và .
Đạo hàm bậc nhất của đối với là .
Step 6
Cho đạo hàm bằng .
Chia mỗi số hạng trong cho và rút gọn.
Chia mỗi số hạng trong cho .
Rút gọn vế trái.
Triệt tiêu thừa số chung .
Triệt tiêu thừa số chung.
Chia cho .
Rút gọn vế phải.
Chia cho .
Step 7
Tập xác định của biểu thức là tất cả các số thực trừ trường hợp biểu thức không xác định. Trong trường hợp này, không có số thực nào làm cho biểu thức không xác định.
Step 8
Các điểm cực trị cần tính.
Step 9
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Step 10
là một cực tiểu địa phương vì giá trị của đạo hàm bậc hai dương. Đây được gọi là phép kiểm định đạo hàm bậc hai.
là cực tiểu địa phương
Step 11
Thay thế biến bằng trong biểu thức.
Rút gọn kết quả.
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Trừ khỏi .
Câu trả lời cuối cùng là .
Step 12
Đây là những cực trị địa phương cho .
là một cực tiểu địa phương
Step 13