Nhập bài toán...
Giải tích Ví dụ
Step 1
Chuyển giới hạn vào bên trong logarit.
Step 2
Tính giới hạn của tử số và giới hạn của mẫu số.
Lấy giới hạn của tử số và giới hạn của mẫu số.
Tính giới hạn của tử số.
Tính giới hạn.
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Đưa số mũ từ ra ngoài giới hạn bằng quy tắc lũy thừa của giới hạn.
Tính giới hạn của mà không đổi khi tiến dần đến .
Tính giới hạn của bằng cách điền vào cho .
Rút gọn kết quả.
Rút gọn mỗi số hạng.
Một mũ bất kỳ số nào là một.
Nhân với .
Trừ khỏi .
Tính giới hạn của mẫu số.
Tính giới hạn.
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Tính giới hạn của mà không đổi khi tiến dần đến .
Tính giới hạn của bằng cách điền vào cho .
Rút gọn kết quả.
Nhân với .
Trừ khỏi .
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Vì ở dạng không xác định, nên ta áp dụng quy tắc L'Hôpital. Quy tắc L'Hôpital khẳng định rằng giới hạn của một thương của các hàm số bằng giới hạn của thương của các đạo hàm của chúng.
Tìm đạo hàm của tử số và mẫu số.
Tính đạo hàm tử số và mẫu số.
Theo Quy tắc tổng, đạo hàm của đối với là .
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Vì là hằng số đối với , đạo hàm của đối với là .
Cộng và .
Theo Quy tắc tổng, đạo hàm của đối với là .
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Vì là hằng số đối với , đạo hàm của đối với là .
Cộng và .
Chia cho .
Step 3
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Step 4
Tính giới hạn của bằng cách điền vào cho .
Step 5
Nhân với .
Step 6
Kết quả có thể được hiển thị ở nhiều dạng.
Dạng chính xác:
Dạng thập phân: