Nhập bài toán...
Giải tích Ví dụ
Step 1
Tìm đạo hàm bậc một.
Theo Quy tắc tổng, đạo hàm của đối với là .
Tính .
Vì không đổi đối với , nên đạo hàm của đối với là .
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Nhân với .
Tính .
Vì không đổi đối với , nên đạo hàm của đối với là .
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Nhân với .
Tìm đạo hàm bằng quy tắc hằng số.
Vì là hằng số đối với , đạo hàm của đối với là .
Cộng và .
Tìm đạo hàm bậc hai.
Theo Quy tắc tổng, đạo hàm của đối với là .
Tính .
Vì không đổi đối với , nên đạo hàm của đối với là .
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Nhân với .
Tính .
Vì không đổi đối với , nên đạo hàm của đối với là .
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Nhân với .
Đạo hàm bậc hai của đối với là .
Step 2
Đặt đạo hàm bậc hai bằng .
Trừ khỏi cả hai vế của phương trình.
Chia mỗi số hạng trong cho và rút gọn.
Chia mỗi số hạng trong cho .
Rút gọn vế trái.
Triệt tiêu thừa số chung .
Triệt tiêu thừa số chung.
Chia cho .
Rút gọn vế phải.
Chia cho .
Step 3
Thay trong để tìm giá trị của .
Thay thế biến bằng trong biểu thức.
Rút gọn kết quả.
Rút gọn mỗi số hạng.
Nâng lên lũy thừa .
Nhân với .
Nâng lên lũy thừa .
Nhân với .
Rút gọn bằng cách cộng và trừ.
Cộng và .
Trừ khỏi .
Câu trả lời cuối cùng là .
Tìm điểm bằng cách thay thế trong là . Điểm này có thể là một điểm uốn.
Step 4
Tách thành các khoảng xung quanh các điểm có khả năng là các điểm uốn.
Step 5
Thay thế biến bằng trong biểu thức.
Rút gọn kết quả.
Nhân với .
Cộng và .
Câu trả lời cuối cùng là .
Tại , đạo hàm bậc hai là . Vì số này dương, đạo hàm bậc hai tăng trên khoảng .
Tăng trên vì
Tăng trên vì
Step 6
Thay thế biến bằng trong biểu thức.
Rút gọn kết quả.
Nhân với .
Cộng và .
Câu trả lời cuối cùng là .
Tại , đạo hàm bậc hai là . Bởi vì đây là số âm, đạo hàm bậc hai giảm trên khoảng
Giảm trên vì
Giảm trên vì
Step 7
Điểm uốn là điểm nằm trên đường cong mà tại đó độ lõm đổi dấu từ cộng sang trừ hoặc từ trừ sang cộng. Điểm uốn trong trường hợp này là .
Step 8