Giải tích Ví dụ

Tìm Các Điểm Uốn f(x)=150+8x^3+x^4
Step 1
Tìm đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Tìm đạo hàm.
Nhấp để xem thêm các bước...
Theo Quy tắc tổng, đạo hàm của đối với .
là hằng số đối với , đạo hàm của đối với .
Tính .
Nhấp để xem thêm các bước...
không đổi đối với , nên đạo hàm của đối với .
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Nhân với .
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Rút gọn.
Nhấp để xem thêm các bước...
Cộng .
Sắp xếp lại các số hạng.
Tìm đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Theo Quy tắc tổng, đạo hàm của đối với .
Tính .
Nhấp để xem thêm các bước...
không đổi đối với , nên đạo hàm của đối với .
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Nhân với .
Tính .
Nhấp để xem thêm các bước...
không đổi đối với , nên đạo hàm của đối với .
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Nhân với .
Đạo hàm bậc hai của đối với .
Step 2
Đặt đạo hàm bậc hai bằng sau đó giải phương trình .
Nhấp để xem thêm các bước...
Đặt đạo hàm bậc hai bằng .
Đưa ra ngoài .
Nhấp để xem thêm các bước...
Đưa ra ngoài .
Đưa ra ngoài .
Đưa ra ngoài .
Nếu bất kỳ thừa số riêng lẻ nào ở vế trái của phương trình bằng , toàn bộ biểu thức sẽ bằng .
Đặt bằng với .
Đặt bằng và giải tìm .
Nhấp để xem thêm các bước...
Đặt bằng với .
Trừ khỏi cả hai vế của phương trình.
Đáp án cuối cùng là tất cả các giá trị làm cho đúng.
Step 3
Tìm các điểm mà tại đó đạo hàm bậc hai là .
Nhấp để xem thêm các bước...
Thay trong để tìm giá trị của .
Nhấp để xem thêm các bước...
Thay thế biến bằng trong biểu thức.
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Nhân với .
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Rút gọn bằng cách cộng các số.
Nhấp để xem thêm các bước...
Cộng .
Cộng .
Câu trả lời cuối cùng là .
Tìm điểm bằng cách thay thế trong . Điểm này có thể là một điểm uốn.
Thay trong để tìm giá trị của .
Nhấp để xem thêm các bước...
Thay thế biến bằng trong biểu thức.
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Nâng lên lũy thừa .
Nhân với .
Nâng lên lũy thừa .
Rút gọn bằng cách cộng và trừ.
Nhấp để xem thêm các bước...
Trừ khỏi .
Cộng .
Câu trả lời cuối cùng là .
Tìm điểm bằng cách thay thế trong . Điểm này có thể là một điểm uốn.
Xác định các điểm có thể là điểm uốn.
Step 4
Tách thành các khoảng xung quanh các điểm có khả năng là các điểm uốn.
Step 5
Thay một giá trị từ khoảng vào đạo hàm bậc hai để xác định xem hàm số tăng hay giảm.
Nhấp để xem thêm các bước...
Thay thế biến bằng trong biểu thức.
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Nâng lên lũy thừa .
Nhân với .
Nhân với .
Trừ khỏi .
Câu trả lời cuối cùng là .
Tại , đạo hàm bậc hai là . Vì số này dương, đạo hàm bậc hai tăng trên khoảng .
Tăng trên
Tăng trên
Step 6
Thay một giá trị từ khoảng vào đạo hàm bậc hai để xác định xem hàm số tăng hay giảm.
Nhấp để xem thêm các bước...
Thay thế biến bằng trong biểu thức.
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Nâng lên lũy thừa .
Nhân với .
Nhân với .
Trừ khỏi .
Câu trả lời cuối cùng là .
Tại , đạo hàm bậc hai là . Bởi vì đây là số âm, đạo hàm bậc hai giảm trên khoảng
Giảm trên
Giảm trên
Step 7
Thay một giá trị từ khoảng vào đạo hàm bậc hai để xác định xem hàm số tăng hay giảm.
Nhấp để xem thêm các bước...
Thay thế biến bằng trong biểu thức.
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Nâng lên lũy thừa .
Nhân với .
Nhân với .
Cộng .
Câu trả lời cuối cùng là .
Tại , đạo hàm bậc hai là . Vì số này dương, đạo hàm bậc hai tăng trên khoảng .
Tăng trên
Tăng trên
Step 8
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection points in this case are .
Step 9
Cookies & Quyền riêng tư
Trang web này sử dụng cookies để đảm bảo bạn có được trải nghiệm tốt nhất.
Thông tin khác