Giải tích Ví dụ

Ước tính Giới Hạn giới hạn khi x tiến dần đến 4 của (x^2-10x+24)/(x-4)
Step 1
Áp dụng quy tắc l'Hôpital
Nhấp để xem thêm các bước...
Tính giới hạn của tử số và giới hạn của mẫu số.
Nhấp để xem thêm các bước...
Lấy giới hạn của tử số và giới hạn của mẫu số.
Tính giới hạn của tử số.
Nhấp để xem thêm các bước...
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Đưa số mũ từ ra ngoài giới hạn bằng quy tắc lũy thừa của giới hạn.
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Tính giới hạn của mà không đổi khi tiến dần đến .
Tính các giới hạn bằng cách điền vào cho tất cả các lần xảy ra của .
Nhấp để xem thêm các bước...
Tính giới hạn của bằng cách điền vào cho .
Tính giới hạn của bằng cách điền vào cho .
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Nâng lên lũy thừa .
Nhân với .
Trừ khỏi .
Cộng .
Tính giới hạn của mẫu số.
Nhấp để xem thêm các bước...
Tính giới hạn.
Nhấp để xem thêm các bước...
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Tính giới hạn của mà không đổi khi tiến dần đến .
Tính giới hạn của bằng cách điền vào cho .
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Nhân với .
Trừ khỏi .
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
ở dạng không xác định, nên ta áp dụng quy tắc L'Hôpital. Quy tắc L'Hôpital khẳng định rằng giới hạn của một thương của các hàm số bằng giới hạn của thương của các đạo hàm của chúng.
Tìm đạo hàm của tử số và mẫu số.
Nhấp để xem thêm các bước...
Tính đạo hàm tử số và mẫu số.
Theo Quy tắc tổng, đạo hàm của đối với .
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Tính .
Nhấp để xem thêm các bước...
không đổi đối với , nên đạo hàm của đối với .
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Nhân với .
là hằng số đối với , đạo hàm của đối với .
Cộng .
Theo Quy tắc tổng, đạo hàm của đối với .
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
là hằng số đối với , đạo hàm của đối với .
Cộng .
Chia cho .
Step 2
Tính giới hạn.
Nhấp để xem thêm các bước...
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Tính giới hạn của mà không đổi khi tiến dần đến .
Step 3
Tính giới hạn của bằng cách điền vào cho .
Step 4
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Nhân với .
Nhân với .
Trừ khỏi .
Cookies & Quyền riêng tư
Trang web này sử dụng cookies để đảm bảo bạn có được trải nghiệm tốt nhất.
Thông tin khác