Giải tích Ví dụ

Tìm Nơi Hàm Số Tăng/Giảm Bằng Cách Sử Dụng Đạo Hàm f(x)=1/x
Step 1
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Viết lại ở dạng .
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Viết lại biểu thức bằng quy tắc số mũ âm .
Đạo hàm bậc nhất của đối với .
Step 2
Cho đạo hàm bằng rồi giải phương trình .
Nhấp để xem thêm các bước...
Cho đạo hàm bằng .
Cho tử bằng không.
, nên không có đáp án.
Không có đáp án
Không có đáp án
Step 3
Không có giá trị nào của trong tập xác định của bài toán ban đầu có đạo hàm bằng hoặc không xác định.
Không tìm được điểm cực trị nào
Step 4
Tìm nơi đạo hàm không xác định.
Nhấp để xem thêm các bước...
Đặt mẫu số trong bằng để tìm nơi biểu thức không xác định.
Giải tìm .
Nhấp để xem thêm các bước...
Lấy căn bậc hai của cả hai vế của phương trình để loại bỏ số mũ ở vế trái.
Rút gọn .
Nhấp để xem thêm các bước...
Viết lại ở dạng .
Đưa các số hạng dưới dấu căn ra ngoài, giả sử đó là các số thực dương.
Cộng hoặc trừ .
Step 5
Sau khi tìm điểm khiến cho đạo hàm bằng với hoặc không xác định, sử dụng khoảng để kiểm tra nơi tăng và nơi nó giảm là .
Step 6
Thay một giá trị từ khoảng vào đạo hàm để xác định xem hàm số tăng hay giảm.
Nhấp để xem thêm các bước...
Thay thế biến bằng trong biểu thức.
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Nâng lên lũy thừa .
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Triệt tiêu thừa số chung.
Viết lại biểu thức.
Nhân với .
Câu trả lời cuối cùng là .
Tại đạo hàm là . Vì đây là số âm, hàm số giảm trên .
Giảm trên
Giảm trên
Step 7
Thay một giá trị từ khoảng vào đạo hàm để xác định xem hàm số tăng hay giảm.
Nhấp để xem thêm các bước...
Thay thế biến bằng trong biểu thức.
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Một mũ bất kỳ số nào là một.
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Triệt tiêu thừa số chung.
Viết lại biểu thức.
Nhân với .
Câu trả lời cuối cùng là .
Tại đạo hàm là . Vì đây là số âm, hàm số giảm trên .
Giảm trên
Giảm trên
Step 8
Liệt kê các khoảng trong đó hàm tăng và giảm.
Giảm trên:
Step 9
Cookies & Quyền riêng tư
Trang web này sử dụng cookies để đảm bảo bạn có được trải nghiệm tốt nhất.
Thông tin khác