Cálculo Exemplos
Etapa 1
Etapa 1.1
Encontre a primeira derivada.
Etapa 1.1.1
Diferencie.
Etapa 1.1.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.1.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.2
Avalie .
Etapa 1.1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.2.3
Multiplique por .
Etapa 1.1.3
Avalie .
Etapa 1.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.3.3
Multiplique por .
Etapa 1.2
A primeira derivada de com relação a é .
Etapa 2
Etapa 2.1
Defina a primeira derivada como igual a .
Etapa 2.2
Fatore o lado esquerdo da equação.
Etapa 2.2.1
Fatore de .
Etapa 2.2.1.1
Fatore de .
Etapa 2.2.1.2
Fatore de .
Etapa 2.2.1.3
Fatore de .
Etapa 2.2.1.4
Fatore de .
Etapa 2.2.1.5
Fatore de .
Etapa 2.2.2
Fatore.
Etapa 2.2.2.1
Fatore usando o teste das raízes racionais.
Etapa 2.2.2.1.1
Se uma função polinomial tiver coeficientes inteiros, então todo zero racional terá a forma , em que é um fator da constante e é um fator do coeficiente de maior ordem.
Etapa 2.2.2.1.2
Encontre todas as combinações de . Essas são as raízes possíveis da função polinomial.
Etapa 2.2.2.1.3
Substitua e simplifique a expressão. Nesse caso, a expressão é igual a . Portanto, é uma raiz do polinômio.
Etapa 2.2.2.1.3.1
Substitua no polinômio.
Etapa 2.2.2.1.3.2
Eleve à potência de .
Etapa 2.2.2.1.3.3
Some e .
Etapa 2.2.2.1.3.4
Subtraia de .
Etapa 2.2.2.1.4
Como é uma raiz conhecida, divida o polinômio por para encontrar o polinômio do quociente. Então, esse polinômio pode ser usado para encontrar as raízes restantes.
Etapa 2.2.2.1.5
Divida por .
Etapa 2.2.2.1.5.1
Estabeleça os polinômios a serem divididos. Se não houver um termo para cada expoente, insira um com valor de .
| - | + | + | - |
Etapa 2.2.2.1.5.2
Divida o termo de ordem mais alta no dividendo pelo termo de ordem mais alta no divisor .
| - | + | + | - |
Etapa 2.2.2.1.5.3
Multiplique o novo termo do quociente pelo divisor.
| - | + | + | - | ||||||||
| + | - |
Etapa 2.2.2.1.5.4
A expressão precisa ser subtraída do dividendo. Portanto, altere todos os sinais em .
| - | + | + | - | ||||||||
| - | + |
Etapa 2.2.2.1.5.5
Depois de alterar os sinais, some o último dividendo do polinômio multiplicado para encontrar o novo dividendo.
| - | + | + | - | ||||||||
| - | + | ||||||||||
| + |
Etapa 2.2.2.1.5.6
Tire os próximos termos do dividendo original e os coloque no dividendo atual.
| - | + | + | - | ||||||||
| - | + | ||||||||||
| + | + |
Etapa 2.2.2.1.5.7
Divida o termo de ordem mais alta no dividendo pelo termo de ordem mais alta no divisor .
| + | |||||||||||
| - | + | + | - | ||||||||
| - | + | ||||||||||
| + | + |
Etapa 2.2.2.1.5.8
Multiplique o novo termo do quociente pelo divisor.
| + | |||||||||||
| - | + | + | - | ||||||||
| - | + | ||||||||||
| + | + | ||||||||||
| + | - |
Etapa 2.2.2.1.5.9
A expressão precisa ser subtraída do dividendo. Portanto, altere todos os sinais em .
| + | |||||||||||
| - | + | + | - | ||||||||
| - | + | ||||||||||
| + | + | ||||||||||
| - | + |
Etapa 2.2.2.1.5.10
Depois de alterar os sinais, some o último dividendo do polinômio multiplicado para encontrar o novo dividendo.
| + | |||||||||||
| - | + | + | - | ||||||||
| - | + | ||||||||||
| + | + | ||||||||||
| - | + | ||||||||||
| + |
Etapa 2.2.2.1.5.11
Tire os próximos termos do dividendo original e os coloque no dividendo atual.
| + | |||||||||||
| - | + | + | - | ||||||||
| - | + | ||||||||||
| + | + | ||||||||||
| - | + | ||||||||||
| + | - |
Etapa 2.2.2.1.5.12
Divida o termo de ordem mais alta no dividendo pelo termo de ordem mais alta no divisor .
| + | + | ||||||||||
| - | + | + | - | ||||||||
| - | + | ||||||||||
| + | + | ||||||||||
| - | + | ||||||||||
| + | - |
Etapa 2.2.2.1.5.13
Multiplique o novo termo do quociente pelo divisor.
| + | + | ||||||||||
| - | + | + | - | ||||||||
| - | + | ||||||||||
| + | + | ||||||||||
| - | + | ||||||||||
| + | - | ||||||||||
| + | - |
Etapa 2.2.2.1.5.14
A expressão precisa ser subtraída do dividendo. Portanto, altere todos os sinais em .
| + | + | ||||||||||
| - | + | + | - | ||||||||
| - | + | ||||||||||
| + | + | ||||||||||
| - | + | ||||||||||
| + | - | ||||||||||
| - | + |
Etapa 2.2.2.1.5.15
Depois de alterar os sinais, some o último dividendo do polinômio multiplicado para encontrar o novo dividendo.
| + | + | ||||||||||
| - | + | + | - | ||||||||
| - | + | ||||||||||
| + | + | ||||||||||
| - | + | ||||||||||
| + | - | ||||||||||
| - | + | ||||||||||
Etapa 2.2.2.1.5.16
Já que o resto é , a resposta final é o quociente.
Etapa 2.2.2.1.6
Escreva como um conjunto de fatores.
Etapa 2.2.2.2
Remova os parênteses desnecessários.
Etapa 2.3
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 2.4
Defina como igual a e resolva para .
Etapa 2.4.1
Defina como igual a .
Etapa 2.4.2
Some aos dois lados da equação.
Etapa 2.5
Defina como igual a e resolva para .
Etapa 2.5.1
Defina como igual a .
Etapa 2.5.2
Resolva para .
Etapa 2.5.2.1
Use a fórmula quadrática para encontrar as soluções.
Etapa 2.5.2.2
Substitua os valores , e na fórmula quadrática e resolva .
Etapa 2.5.2.3
Simplifique.
Etapa 2.5.2.3.1
Simplifique o numerador.
Etapa 2.5.2.3.1.1
Um elevado a qualquer potência é um.
Etapa 2.5.2.3.1.2
Multiplique .
Etapa 2.5.2.3.1.2.1
Multiplique por .
Etapa 2.5.2.3.1.2.2
Multiplique por .
Etapa 2.5.2.3.1.3
Subtraia de .
Etapa 2.5.2.3.1.4
Reescreva como .
Etapa 2.5.2.3.1.5
Reescreva como .
Etapa 2.5.2.3.1.6
Reescreva como .
Etapa 2.5.2.3.2
Multiplique por .
Etapa 2.5.2.4
Simplifique a expressão para resolver a parte de .
Etapa 2.5.2.4.1
Simplifique o numerador.
Etapa 2.5.2.4.1.1
Um elevado a qualquer potência é um.
Etapa 2.5.2.4.1.2
Multiplique .
Etapa 2.5.2.4.1.2.1
Multiplique por .
Etapa 2.5.2.4.1.2.2
Multiplique por .
Etapa 2.5.2.4.1.3
Subtraia de .
Etapa 2.5.2.4.1.4
Reescreva como .
Etapa 2.5.2.4.1.5
Reescreva como .
Etapa 2.5.2.4.1.6
Reescreva como .
Etapa 2.5.2.4.2
Multiplique por .
Etapa 2.5.2.4.3
Altere para .
Etapa 2.5.2.4.4
Reescreva como .
Etapa 2.5.2.4.5
Fatore de .
Etapa 2.5.2.4.6
Fatore de .
Etapa 2.5.2.4.7
Mova o número negativo para a frente da fração.
Etapa 2.5.2.5
Simplifique a expressão para resolver a parte de .
Etapa 2.5.2.5.1
Simplifique o numerador.
Etapa 2.5.2.5.1.1
Um elevado a qualquer potência é um.
Etapa 2.5.2.5.1.2
Multiplique .
Etapa 2.5.2.5.1.2.1
Multiplique por .
Etapa 2.5.2.5.1.2.2
Multiplique por .
Etapa 2.5.2.5.1.3
Subtraia de .
Etapa 2.5.2.5.1.4
Reescreva como .
Etapa 2.5.2.5.1.5
Reescreva como .
Etapa 2.5.2.5.1.6
Reescreva como .
Etapa 2.5.2.5.2
Multiplique por .
Etapa 2.5.2.5.3
Altere para .
Etapa 2.5.2.5.4
Reescreva como .
Etapa 2.5.2.5.5
Fatore de .
Etapa 2.5.2.5.6
Fatore de .
Etapa 2.5.2.5.7
Mova o número negativo para a frente da fração.
Etapa 2.5.2.6
A resposta final é a combinação das duas soluções.
Etapa 2.6
A solução final são todos os valores que tornam verdadeiro.
Etapa 3
Os valores, que tornam a derivada igual a , são .
Etapa 4
Depois de encontrar o ponto que torna a derivada igual a ou indefinida, o intervalo para verificar onde está aumentando e onde está diminuindo é .
Etapa 5
Etapa 5.1
Substitua a variável por na expressão.
Etapa 5.2
Simplifique o resultado.
Etapa 5.2.1
Simplifique cada termo.
Etapa 5.2.1.1
Elevar a qualquer potência positiva produz .
Etapa 5.2.1.2
Multiplique por .
Etapa 5.2.1.3
Multiplique por .
Etapa 5.2.2
Simplifique somando e subtraindo.
Etapa 5.2.2.1
Some e .
Etapa 5.2.2.2
Subtraia de .
Etapa 5.2.3
A resposta final é .
Etapa 5.3
Em , a derivada é . Por ser negativa, a função diminui em .
Decréscimo em , pois
Decréscimo em , pois
Etapa 6
Etapa 6.1
Substitua a variável por na expressão.
Etapa 6.2
Simplifique o resultado.
Etapa 6.2.1
Simplifique cada termo.
Etapa 6.2.1.1
Eleve à potência de .
Etapa 6.2.1.2
Multiplique por .
Etapa 6.2.1.3
Multiplique por .
Etapa 6.2.2
Simplifique somando e subtraindo.
Etapa 6.2.2.1
Some e .
Etapa 6.2.2.2
Subtraia de .
Etapa 6.2.3
A resposta final é .
Etapa 6.3
Em , a derivada é . Por ser positiva, a função aumenta em .
Acréscimo em , pois
Acréscimo em , pois
Etapa 7
Liste os intervalos em que a função é crescente e decrescente.
Acréscimo em:
Decréscimo em:
Etapa 8