Enter a problem...
Calculus Examples
Step 1
Find the first derivative.
By the Sum Rule, the derivative of with respect to is .
Evaluate .
Since is constant with respect to , the derivative of with respect to is .
Differentiate using the Power Rule which states that is where .
Multiply by .
Evaluate .
Since is constant with respect to , the derivative of with respect to is .
Differentiate using the Power Rule which states that is where .
Multiply by .
Differentiate using the Constant Rule.
Since is constant with respect to , the derivative of with respect to is .
Add and .
The first derivative of with respect to is .
Step 2
Set the first derivative equal to .
Factor out of .
Factor out of .
Factor out of .
Factor out of .
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Set equal to and solve for .
Set equal to .
Solve for .
Take the 4th root of both sides of the equation to eliminate the exponent on the left side.
Simplify .
Rewrite as .
Pull terms out from under the radical, assuming positive real numbers.
Plus or minus is .
Set equal to and solve for .
Set equal to .
Solve for .
Add to both sides of the equation.
Divide each term in by and simplify.
Divide each term in by .
Simplify the left side.
Cancel the common factor of .
Cancel the common factor.
Divide by .
The final solution is all the values that make true.
Step 3
The values which make the derivative equal to are .
Step 4
Split into separate intervals around the values that make the derivative or undefined.
Step 5
Replace the variable with in the expression.
Simplify the result.
Simplify each term.
Raise to the power of .
Multiply by .
Raise to the power of .
Multiply by .
Subtract from .
The final answer is .
At the derivative is . Since this is negative, the function is decreasing on .
Decreasing on since
Decreasing on since
Step 6
Replace the variable with in the expression.
Simplify the result.
Simplify each term.
Raise to the power of .
Multiply by .
Raise to the power of .
Multiply by .
Subtract from .
The final answer is .
At the derivative is . Since this is negative, the function is decreasing on .
Decreasing on since
Decreasing on since
Step 7
Replace the variable with in the expression.
Simplify the result.
Simplify each term.
Raise to the power of .
Multiply by .
Raise to the power of .
Multiply by .
Subtract from .
The final answer is .
At the derivative is . Since this is positive, the function is increasing on .
Increasing on since
Increasing on since
Step 8
List the intervals on which the function is increasing and decreasing.
Increasing on:
Decreasing on:
Step 9