Calculus Examples

Find the Local Maxima and Minima y=x^3+x^2-x
Step 1
Write as a function.
Step 2
Find the first derivative of the function.
Tap for more steps...
Differentiate.
Tap for more steps...
By the Sum Rule, the derivative of with respect to is .
Differentiate using the Power Rule which states that is where .
Differentiate using the Power Rule which states that is where .
Evaluate .
Tap for more steps...
Since is constant with respect to , the derivative of with respect to is .
Differentiate using the Power Rule which states that is where .
Multiply by .
Step 3
Find the second derivative of the function.
Tap for more steps...
By the Sum Rule, the derivative of with respect to is .
Evaluate .
Tap for more steps...
Since is constant with respect to , the derivative of with respect to is .
Differentiate using the Power Rule which states that is where .
Multiply by .
Evaluate .
Tap for more steps...
Since is constant with respect to , the derivative of with respect to is .
Differentiate using the Power Rule which states that is where .
Multiply by .
Differentiate using the Constant Rule.
Tap for more steps...
Since is constant with respect to , the derivative of with respect to is .
Add and .
Step 4
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Step 5
Find the first derivative.
Tap for more steps...
Find the first derivative.
Tap for more steps...
Differentiate.
Tap for more steps...
By the Sum Rule, the derivative of with respect to is .
Differentiate using the Power Rule which states that is where .
Differentiate using the Power Rule which states that is where .
Evaluate .
Tap for more steps...
Since is constant with respect to , the derivative of with respect to is .
Differentiate using the Power Rule which states that is where .
Multiply by .
The first derivative of with respect to is .
Step 6
Set the first derivative equal to then solve the equation .
Tap for more steps...
Set the first derivative equal to .
Factor by grouping.
Tap for more steps...
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Tap for more steps...
Factor out of .
Rewrite as plus
Apply the distributive property.
Factor out the greatest common factor from each group.
Tap for more steps...
Group the first two terms and the last two terms.
Factor out the greatest common factor (GCF) from each group.
Factor the polynomial by factoring out the greatest common factor, .
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Set equal to and solve for .
Tap for more steps...
Set equal to .
Solve for .
Tap for more steps...
Add to both sides of the equation.
Divide each term in by and simplify.
Tap for more steps...
Divide each term in by .
Simplify the left side.
Tap for more steps...
Cancel the common factor of .
Tap for more steps...
Cancel the common factor.
Divide by .
Set equal to and solve for .
Tap for more steps...
Set equal to .
Subtract from both sides of the equation.
The final solution is all the values that make true.
Step 7
Find the values where the derivative is undefined.
Tap for more steps...
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 8
Critical points to evaluate.
Step 9
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 10
Evaluate the second derivative.
Tap for more steps...
Cancel the common factor of .
Tap for more steps...
Factor out of .
Cancel the common factor.
Rewrite the expression.
Add and .
Step 11
is a local minimum because the value of the second derivative is positive. This is referred to as the second derivative test.
is a local minimum
Step 12
Find the y-value when .
Tap for more steps...
Replace the variable with in the expression.
Simplify the result.
Tap for more steps...
Simplify each term.
Tap for more steps...
Apply the product rule to .
One to any power is one.
Raise to the power of .
Apply the product rule to .
One to any power is one.
Raise to the power of .
Find the common denominator.
Tap for more steps...
Multiply by .
Multiply by .
Multiply by .
Multiply by .
Reorder the factors of .
Multiply by .
Multiply by .
Combine the numerators over the common denominator.
Simplify the expression.
Tap for more steps...
Add and .
Subtract from .
Move the negative in front of the fraction.
The final answer is .
Step 13
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 14
Evaluate the second derivative.
Tap for more steps...
Multiply by .
Add and .
Step 15
is a local maximum because the value of the second derivative is negative. This is referred to as the second derivative test.
is a local maximum
Step 16
Find the y-value when .
Tap for more steps...
Replace the variable with in the expression.
Simplify the result.
Tap for more steps...
Simplify each term.
Tap for more steps...
Raise to the power of .
Raise to the power of .
Multiply by .
Simplify by adding numbers.
Tap for more steps...
Add and .
Add and .
The final answer is .
Step 17
These are the local extrema for .
is a local minima
is a local maxima
Step 18
Cookies & Privacy
This website uses cookies to ensure you get the best experience on our website.
More Information