Enter a problem...
Calculus Examples
Step 1
Write as a function.
Step 2
By the Sum Rule, the derivative of with respect to is .
Evaluate .
Since is constant with respect to , the derivative of with respect to is .
Differentiate using the Power Rule which states that is where .
Multiply by .
Evaluate .
Since is constant with respect to , the derivative of with respect to is .
Differentiate using the Power Rule which states that is where .
Multiply by .
Reorder terms.
Step 3
By the Sum Rule, the derivative of with respect to is .
Evaluate .
Since is constant with respect to , the derivative of with respect to is .
Differentiate using the Power Rule which states that is where .
Multiply by .
Differentiate using the Constant Rule.
Since is constant with respect to , the derivative of with respect to is .
Add and .
Step 4
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Step 5
Find the first derivative.
By the Sum Rule, the derivative of with respect to is .
Evaluate .
Since is constant with respect to , the derivative of with respect to is .
Differentiate using the Power Rule which states that is where .
Multiply by .
Evaluate .
Since is constant with respect to , the derivative of with respect to is .
Differentiate using the Power Rule which states that is where .
Multiply by .
Reorder terms.
The first derivative of with respect to is .
Step 6
Set the first derivative equal to .
Subtract from both sides of the equation.
Divide each term in by and simplify.
Divide each term in by .
Simplify the left side.
Cancel the common factor of .
Cancel the common factor.
Divide by .
Simplify the right side.
Divide by .
Take the square root of both sides of the equation to eliminate the exponent on the left side.
Simplify .
Rewrite as .
Factor out of .
Rewrite as .
Pull terms out from under the radical.
The complete solution is the result of both the positive and negative portions of the solution.
First, use the positive value of the to find the first solution.
Next, use the negative value of the to find the second solution.
The complete solution is the result of both the positive and negative portions of the solution.
Step 7
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 8
Critical points to evaluate.
Step 9
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 10
Multiply by .
Multiply by .
Step 11
is a local maximum because the value of the second derivative is negative. This is referred to as the second derivative test.
is a local maximum
Step 12
Replace the variable with in the expression.
Simplify the result.
Simplify each term.
Multiply by .
Apply the product rule to .
Raise to the power of .
Rewrite as .
Raise to the power of .
Rewrite as .
Factor out of .
Rewrite as .
Pull terms out from under the radical.
Multiply by .
Multiply .
Multiply by .
Multiply by .
Subtract from .
The final answer is .
Step 13
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 14
Multiply by .
Multiply by .
Step 15
is a local minimum because the value of the second derivative is positive. This is referred to as the second derivative test.
is a local minimum
Step 16
Replace the variable with in the expression.
Simplify the result.
Simplify each term.
Multiply by .
Apply the product rule to .
Raise to the power of .
Rewrite as .
Raise to the power of .
Rewrite as .
Factor out of .
Rewrite as .
Pull terms out from under the radical.
Multiply by .
Multiply .
Multiply by .
Multiply by .
Add and .
The final answer is .
Step 17
These are the local extrema for .
is a local maxima
is a local minima
Step 18