Calculus Examples

Find the Local Maxima and Minima f(x)=x^4-128x^2+4096
Step 1
Find the first derivative of the function.
Tap for more steps...
Differentiate.
Tap for more steps...
By the Sum Rule, the derivative of with respect to is .
Differentiate using the Power Rule which states that is where .
Evaluate .
Tap for more steps...
Since is constant with respect to , the derivative of with respect to is .
Differentiate using the Power Rule which states that is where .
Multiply by .
Differentiate using the Constant Rule.
Tap for more steps...
Since is constant with respect to , the derivative of with respect to is .
Add and .
Step 2
Find the second derivative of the function.
Tap for more steps...
By the Sum Rule, the derivative of with respect to is .
Evaluate .
Tap for more steps...
Since is constant with respect to , the derivative of with respect to is .
Differentiate using the Power Rule which states that is where .
Multiply by .
Evaluate .
Tap for more steps...
Since is constant with respect to , the derivative of with respect to is .
Differentiate using the Power Rule which states that is where .
Multiply by .
Step 3
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Step 4
Find the first derivative.
Tap for more steps...
Find the first derivative.
Tap for more steps...
Differentiate.
Tap for more steps...
By the Sum Rule, the derivative of with respect to is .
Differentiate using the Power Rule which states that is where .
Evaluate .
Tap for more steps...
Since is constant with respect to , the derivative of with respect to is .
Differentiate using the Power Rule which states that is where .
Multiply by .
Differentiate using the Constant Rule.
Tap for more steps...
Since is constant with respect to , the derivative of with respect to is .
Add and .
The first derivative of with respect to is .
Step 5
Set the first derivative equal to then solve the equation .
Tap for more steps...
Set the first derivative equal to .
Factor the left side of the equation.
Tap for more steps...
Factor out of .
Tap for more steps...
Factor out of .
Factor out of .
Factor out of .
Rewrite as .
Factor.
Tap for more steps...
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Remove unnecessary parentheses.
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Set equal to .
Set equal to and solve for .
Tap for more steps...
Set equal to .
Subtract from both sides of the equation.
Set equal to and solve for .
Tap for more steps...
Set equal to .
Add to both sides of the equation.
The final solution is all the values that make true.
Step 6
Find the values where the derivative is undefined.
Tap for more steps...
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 7
Critical points to evaluate.
Step 8
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 9
Evaluate the second derivative.
Tap for more steps...
Simplify each term.
Tap for more steps...
Raising to any positive power yields .
Multiply by .
Subtract from .
Step 10
is a local maximum because the value of the second derivative is negative. This is referred to as the second derivative test.
is a local maximum
Step 11
Find the y-value when .
Tap for more steps...
Replace the variable with in the expression.
Simplify the result.
Tap for more steps...
Simplify each term.
Tap for more steps...
Raising to any positive power yields .
Raising to any positive power yields .
Multiply by .
Simplify by adding numbers.
Tap for more steps...
Add and .
Add and .
The final answer is .
Step 12
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 13
Evaluate the second derivative.
Tap for more steps...
Simplify each term.
Tap for more steps...
Raise to the power of .
Multiply by .
Subtract from .
Step 14
is a local minimum because the value of the second derivative is positive. This is referred to as the second derivative test.
is a local minimum
Step 15
Find the y-value when .
Tap for more steps...
Replace the variable with in the expression.
Simplify the result.
Tap for more steps...
Simplify each term.
Tap for more steps...
Raise to the power of .
Raise to the power of .
Multiply by .
Simplify by adding and subtracting.
Tap for more steps...
Subtract from .
Add and .
The final answer is .
Step 16
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 17
Evaluate the second derivative.
Tap for more steps...
Simplify each term.
Tap for more steps...
Raise to the power of .
Multiply by .
Subtract from .
Step 18
is a local minimum because the value of the second derivative is positive. This is referred to as the second derivative test.
is a local minimum
Step 19
Find the y-value when .
Tap for more steps...
Replace the variable with in the expression.
Simplify the result.
Tap for more steps...
Simplify each term.
Tap for more steps...
Raise to the power of .
Raise to the power of .
Multiply by .
Simplify by adding and subtracting.
Tap for more steps...
Subtract from .
Add and .
The final answer is .
Step 20
These are the local extrema for .
is a local maxima
is a local minima
is a local minima
Step 21
Cookies & Privacy
This website uses cookies to ensure you get the best experience on our website.
More Information