기초 미적분 예제

형태를 이용해 진폭, 주기, 위상 이동, 수직 이동을 구하는 데 사용되는 변수들을 찾습니다.
진폭 을 구합니다.
진폭:
공식 을 이용하여 주기를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
함수의 주기는 를 이용하여 구할 수 있습니다
주기:
주기 공식에서 을 대입합니다.
주기:
식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
절대값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
주기:
공약수를 소거하여 수식을 간단히 정리합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
에서 를 인수분해합니다.
주기:
공통인수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
에서 를 인수분해합니다.
주기:
공약수로 약분합니다.
주기:
수식을 다시 씁니다.
주기:
주기:
주기:
주기:
주기:
공식을 이용하여 위상차를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
함수의 위상 이동은 를 이용하여 구할 수 있습니다.
위상 변이:
의 값을 위상 이동에 대한 방정식에 대입합니다.
위상 변이:
로 나눕니다.
위상 변이:
위상 변이:
수직이동 값을 구합니다.
수직 이동:
삼각함수의 성질을 나열합니다.
진폭:
주기:
위상 변이: (오른쪽으로 )
수직 이동:
여러 개의 점을 선택하여 그래프를 그립니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
인 점을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
수식에서 변수 을 대입합니다.
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
을 곱합니다.
의 정확한 값은 입니다.
을 곱합니다.
최종 답은 입니다.
인 점을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
수식에서 변수 을 대입합니다.
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
를 분모가 인 분수로 표현합니다.
최대공약수 로 인수분해합니다.
공약수로 약분합니다.
수식을 다시 씁니다.
를 곱합니다.
의 정확한 값은 입니다.
을 곱합니다.
최종 답은 입니다.
인 점을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
수식에서 변수 을 대입합니다.
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
를 분모가 인 분수로 표현합니다.
최대공약수 로 인수분해합니다.
공약수로 약분합니다.
수식을 다시 씁니다.
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
를 곱합니다.
로 나눕니다.
제1사분면에서 동일한 삼각값을 갖는 각도를 찾아 기준 각도를 적용합니다.
의 정확한 값은 입니다.
을 곱합니다.
최종 답은 입니다.
인 점을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
수식에서 변수 을 대입합니다.
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
를 분모가 인 분수로 표현합니다.
최대공약수 로 인수분해합니다.
공약수로 약분합니다.
수식을 다시 씁니다.
를 곱합니다.
제1사분면에서 동일한 삼각값을 갖는 각도를 찾아 기준 각도를 적용합니다. 제4사분면에서 사인이 음수이므로 수식에 마이너스 부호를 붙입니다.
의 정확한 값은 입니다.
을 곱합니다.
을 곱합니다.
최종 답은 입니다.
인 점을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
수식에서 변수 을 대입합니다.
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
를 분모가 인 분수로 표현합니다.
최대공약수 로 인수분해합니다.
공약수로 약분합니다.
수식을 다시 씁니다.
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
를 곱합니다.
로 나눕니다.
는 한 바퀴이므로 으로 바꿉니다.
의 정확한 값은 입니다.
을 곱합니다.
최종 답은 입니다.
표에 있는 점을 적습니다.
삼각함수의 그래프는 진폭, 주기, 위상 변화, 수직 이동, 점들을 이용하여 그릴 수 있습니다.
진폭:
주기:
위상 변이: (오른쪽으로 )
수직 이동:
문제를 입력하세요
Mathway를 사용하기 위해서는 자바스크립트와 모던 브라우저가 필요합니다.
쿠키 및 개인 정보
본 웹사이트는 최상의 웹사이트 경험을 제공하기 위해 쿠기를 사용합니다.
자세한 정보