선형 대수 예제

추축 위치와 추축열 찾기
Step 1
행의 일부 원소를 로 변환하기 위하여 (행 )에 행 연산 을 실행합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
행의 일부 원소를 원하는 값인 로 변환하기 위하여 (행 )을 행연산 로 바꿉니다.
행연산 에 대하여 (행 )에 원소의 실제값을 대입합니다.
( 행)을 간단히 합니다.
Step 2
행의 일부 원소를 로 변환하기 위하여 (행 )에 행 연산 을 실행합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
행의 일부 원소를 원하는 값인 로 변환하기 위하여 (행 )을 행연산 로 바꿉니다.
행연산 에 대하여 (행 )에 원소의 실제값을 대입합니다.
( 행)을 간단히 합니다.
Step 3
행의 일부 원소를 로 변환하기 위하여 (행 )에 행 연산 을 실행합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
행의 일부 원소를 원하는 값인 로 변환하기 위하여 (행 )을 행연산 로 바꿉니다.
행연산 에 대하여 (행 )에 원소의 실제값을 대입합니다.
( 행)을 간단히 합니다.
Step 4
행의 일부 원소를 로 변환하기 위하여 (행 )에 행 연산 을 실행합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
행의 일부 원소를 원하는 값인 로 변환하기 위하여 (행 )을 행연산 로 바꿉니다.
행연산 에 대하여 (행 )에 원소의 실제값을 대입합니다.
( 행)을 간단히 합니다.
Step 5
Pivot columns are the columns, which contains pivot positions, so those pivot columns are .
Step 6
A pivot position in a matrix is a position that after row reduction contains a leading . Thus, the leading one in the pivot columns are the pivot positions.
추축열 의 선행 의 위치가 추축 위치입니다.
문제를 입력하세요
Mathway를 사용하기 위해서는 자바스크립트와 모던 브라우저가 필요합니다.
쿠키 및 개인 정보
본 웹사이트는 최상의 웹사이트 경험을 제공하기 위해 쿠기를 사용합니다.
자세한 정보