유한 수학 예제

주어진 표가 확률 분포에 필요한 2가지 성질을 만족하는지 증명합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
이산 확률변수 는 분리된 값의 집합을 갖습니다 (예를 들어 , , ...). 이산 확률변수의 확률 분포는 각각의 가능한 값 에 확률 를 할당합니다. 각 에 대해 확률 부터 까지의 값을 가지며 모든 가능한 값에 대한 확률의 합은 입니다.
1. 각 에 대해 입니다.
2. .
사이에 속하므로 확률 분포의 첫번째 성질을 만족합니다.
사이에 속합니다
사이에 속하므로 확률 분포의 첫번째 성질을 만족합니다.
사이에 속합니다
에 대해 확률 부터 까지의 닫힌 구간에 존재하며 이는 확률 분포의 첫번째 성질을 만족합니다.
모든 x 값에 대해
모든 값에 대한 확률의 합을 구합니다.
모든 가능한 값에 대한 확률의 합은 입니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
에 더합니다.
에 더합니다.
에 대하여 확률 부터 까지의 닫힌 구간에 존재합니다. 또한, 모든 에 대한 확률의 합은 과 동일하며 이는 해당 표가 확률 분포의 두 가지 성질을 만족함을 의미합니다.
주어진 표는 확률 분포의 두 가지 성질을 만족합니다:
성질 1: 모든 값에 대하여
성질 2:
주어진 표는 확률 분포의 두 가지 성질을 만족합니다:
성질 1: 모든 값에 대하여
성질 2:
분포의 기대 평균은 분포를 무한번 반복했을 때 예상되는 값을 말합니다. 이는 각 값에 해당 이산 확률을 곱한 값과 동일합니다.
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
을 곱합니다.
을 곱합니다.
을 곱합니다.
숫자를 더해 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
에 더합니다.
에 더합니다.
분포의 표준편차는 분산도를 나타내는 기준으로 분산의 제곱근과 같습니다.
알고 있는 값을 적습니다.
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
을 곱합니다.
에서 을 뺍니다.
승 합니다.
을 곱합니다.
을 곱합니다.
에서 을 뺍니다.
승 합니다.
을 곱합니다.
을 곱합니다.
에서 을 뺍니다.
승 합니다.
을 곱합니다.
에 더합니다.
에 더합니다.
The result can be shown in multiple forms.
완전 형식:
소수 형식:
문제를 입력하세요
Mathway를 사용하기 위해서는 자바스크립트와 모던 브라우저가 필요합니다.
쿠키 및 개인 정보
본 웹사이트는 최상의 웹사이트 경험을 제공하기 위해 쿠기를 사용합니다.
자세한 정보