유한 수학 예제

근이 구간에 존재하는지 증명하기
,
중간값 정리란 가 구간 에서 실수인 연속 함수인 경우, 사이에 있는 수 에 대해 를 만족하는 구간에 존재한다는 것을 말합니다.
식의 정의역은 식이 정의되지 않는 수를 제외한 모든 실수입니다. 이 경우 식이 정의되지 않도록 하는 실수는 없습니다.
구간 표기:
Set-Builder Notation:
에서 을 뺍니다.
에서 을 뺍니다.

자세한 풀이 단계를 보려면 여기를 누르세요...
로 방정식을 다시 씁니다.
방정식의 양변에 를 더합니다.
중간값 정리에 따라 에서 연속인 함수이므로 구간에 인 근이 존재합니다.
구간에서의 근은 에 있습니다.
문제를 입력하세요
Mathway를 사용하기 위해서는 자바스크립트와 모던 브라우저가 필요합니다.
쿠키 및 개인 정보
본 웹사이트는 최상의 웹사이트 경험을 제공하기 위해 쿠기를 사용합니다.
자세한 정보