미적분 예제
Step 1
1차 도함수를 구합니다.
은 에 대해 일정하므로 에 대한 의 미분은 입니다.
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
에 을 곱합니다.
의 에 대한 1차 도함수는 입니다.
Step 2
1차 도함수가 이 되게 합니다.
의 각 항을 로 나누고 식을 간단히 합니다.
의 각 항을 로 나눕니다.
좌변을 간단히 합니다.
의 공약수로 약분합니다.
공약수로 약분합니다.
을 로 나눕니다.
우변을 간단히 합니다.
을 로 나눕니다.
방정식의 양변에 제곱근을 취하여 좌변의 지수를 소거합니다.
을 간단히 합니다.
을 로 바꿔 씁니다.
양의 실수로 가정하여 근호 안의 항을 밖으로 빼냅니다.
플러스 마이너스 은 입니다.
Step 3
식의 정의역은 식이 정의되지 않는 수를 제외한 모든 실수입니다. 이 경우 식이 정의되지 않도록 하는 실수는 없습니다.
Step 4
일 때 값을 구합니다.
에 를 대입합니다.
간단히 합니다.
을 여러 번 거듭제곱해도 이 나옵니다.
에 을 곱합니다.
모든 점을 나열합니다.
Step 5