대수 예제

특성방정식 를 구하기 위하여 공식을 세웁니다.
알고 있는 값을 공식에 대입합니다.
고유값을 단위행렬에 곱한 결과를 원래 행렬에서 뺍니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
행렬의 각 원소에 을 곱합니다.
행렬 의 각 원소를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
Rearrange .
Rearrange .
Rearrange .
Rearrange .
Rearrange .
Rearrange .
Rearrange .
Rearrange .
Rearrange .
Add the corresponding elements of to each element of .
행렬 의 각 원소를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
을 간단히 합니다.
을 간단히 합니다.
을 간단히 합니다.
을 간단히 합니다.
을 간단히 합니다.
을 간단히 합니다.
의 행렬식은 입니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
행렬을 작은 부분으로 나누어 행렬식을 구하기 위한 식을 세웁니다.
의 행렬식은 입니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
행렬의 행렬식은 공식을 이용해 계산합니다.
행렬식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
을 곱합니다.
을 곱합니다.
모두 곱해 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
에 더합니다.
분배 법칙을 적용합니다.
곱합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
을 곱합니다.
을 곱합니다.
의 행렬식은 입니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
행렬의 행렬식은 공식을 이용해 계산합니다.
행렬식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
FOIL 계산법을 이용하여 를 전개합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
분배 법칙을 적용합니다.
분배 법칙을 적용합니다.
분배 법칙을 적용합니다.
동류항끼리 묶고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
을 곱합니다.
을 곱합니다.
을 곱합니다.
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
을 곱합니다.
을 곱합니다.
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
을 곱합니다.
을 곱합니다.
을 곱합니다.
에 더합니다.
을 곱합니다.
에 더합니다.
첫번째 수식의 항과 두번째 수식의 항을 각각 곱하여 를 전개합니다.
항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
Multiply by by adding the exponents.
자세한 풀이 단계를 보려면 여기를 누르세요...
를 옮깁니다.
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
승 합니다.
지수 법칙 을 이용하여 지수를 합칩니다.
에 더합니다.
을 곱합니다.
을 곱합니다.
을 곱합니다.
을 곱합니다.
을 곱합니다.
을 곱합니다.
항을 더해 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
에 더합니다.
에 더합니다.
행렬에 을 곱했으므로 행렬식은 입니다.
숫자를 더해 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
에 더합니다.
0을 더해 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
에 더합니다.
에 더합니다.
에서 을 뺍니다.
특성 다항식을 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
에서 를 인수분해합니다.
에서 를 인수분해합니다.
에서 를 인수분해합니다.
에서 를 인수분해합니다.
에서 를 인수분해합니다.
인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
공통인수를 이용하여 인수분해를 합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
형태의 다항식에 대해 곱이 이고 합이 인 두 항의 합으로 중간항을 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
에서 를 인수분해합니다.
+ 로 다시 씁니다.
분배 법칙을 적용합니다.
을 곱합니다.
각 그룹에서 최대공약수를 밖으로 뺍니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
처음 두 항과 마지막 두 항을 묶습니다.
각 그룹에서 최대공약수를 밖으로 뺍니다.
최대공약수 을 밖으로 빼어 다항식을 인수분해합니다.
불필요한 괄호를 제거합니다.
특성다항식이 이 되도록 하여 고유값 를 구합니다.
에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
첫번째 인수를 으로 둡니다.
다음 인수를 이 되도록 하여 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
다음 인수를 으로 둡니다.
방정식의 양변에 를 더합니다.
의 각 항에 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
의 각 항에 을 곱합니다.
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
을 곱합니다.
을 곱합니다.
을 곱합니다.
다음 인수를 이 되도록 하여 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르세요...
다음 인수를 으로 둡니다.
방정식의 양변에 를 더합니다.
을 참으로 만드는 모든 값이 최종 해가 됩니다.
문제를 입력하세요
Mathway를 사용하기 위해서는 자바스크립트와 모던 브라우저가 필요합니다.
쿠키 및 개인 정보
본 웹사이트는 최상의 웹사이트 경험을 제공하기 위해 쿠기를 사용합니다.
자세한 정보